MIDNIGHT-AITTM / midi_tokenizer.py
skytnt's picture
v1.2
c51a1c9
raw
history blame
16.2 kB
import random
import PIL
import numpy as np
class MIDITokenizer:
def __init__(self):
self.vocab_size = 0
def allocate_ids(size):
ids = [self.vocab_size + i for i in range(size)]
self.vocab_size += size
return ids
self.pad_id = allocate_ids(1)[0]
self.bos_id = allocate_ids(1)[0]
self.eos_id = allocate_ids(1)[0]
self.events = {
"note": ["time1", "time2", "track", "duration", "channel", "pitch", "velocity"],
"patch_change": ["time1", "time2", "track", "channel", "patch"],
"control_change": ["time1", "time2", "track", "channel", "controller", "value"],
"set_tempo": ["time1", "time2", "track", "bpm"],
}
self.event_parameters = {
"time1": 128, "time2": 16, "duration": 2048, "track": 128, "channel": 16, "pitch": 128, "velocity": 128,
"patch": 128, "controller": 128, "value": 128, "bpm": 256
}
self.event_ids = {e: allocate_ids(1)[0] for e in self.events.keys()}
self.id_events = {i: e for e, i in self.event_ids.items()}
self.parameter_ids = {p: allocate_ids(s) for p, s in self.event_parameters.items()}
self.max_token_seq = max([len(ps) for ps in self.events.values()]) + 1
def tempo2bpm(self, tempo):
tempo = tempo / 10 ** 6 # us to s
bpm = 60 / tempo
return bpm
def bpm2tempo(self, bpm):
if bpm == 0:
bpm = 1
tempo = int((60 / bpm) * 10 ** 6)
return tempo
def tokenize(self, midi_score, add_bos_eos=True, cc_eps=4, tempo_eps=4):
ticks_per_beat = midi_score[0]
event_list = {}
for track_idx, track in enumerate(midi_score[1:129]):
last_notes = {}
patch_dict = {}
control_dict = {}
last_tempo = 0
for event in track:
if event[0] not in self.events:
continue
t = round(16 * event[1] / ticks_per_beat) # quantization
new_event = [event[0], t // 16, t % 16, track_idx] + event[2:]
if event[0] == "note":
new_event[4] = max(1, round(16 * new_event[4] / ticks_per_beat))
elif event[0] == "set_tempo":
if new_event[4] == 0: # invalid tempo
continue
bpm = int(self.tempo2bpm(new_event[4]))
new_event[4] = min(bpm, 255)
if event[0] == "note":
key = tuple(new_event[:4] + new_event[5:-1])
else:
key = tuple(new_event[:-1])
if event[0] == "patch_change":
c, p = event[2:]
last_p = patch_dict.setdefault(c, None)
if last_p == p:
continue
patch_dict[c] = p
elif event[0] == "control_change":
c, cc, v = event[2:]
last_v = control_dict.setdefault((c, cc), 0)
if abs(last_v - v) < cc_eps:
continue
control_dict[(c, cc)] = v
elif event[0] == "set_tempo":
tempo = new_event[-1]
if abs(last_tempo - tempo) < tempo_eps:
continue
last_tempo = tempo
if event[0] == "note": # to eliminate note overlap due to quantization
cp = tuple(new_event[5:7])
if cp in last_notes:
last_note_key, last_note = last_notes[cp]
last_t = last_note[1] * 16 + last_note[2]
last_note[4] = max(0, min(last_note[4], t - last_t))
if last_note[4] == 0:
event_list.pop(last_note_key)
last_notes[cp] = (key, new_event)
event_list[key] = new_event
event_list = list(event_list.values())
event_list = sorted(event_list, key=lambda e: e[1:4])
midi_seq = []
setup_events = {}
notes_in_setup = False
for i, event in enumerate(event_list): # optimise setup
new_event = [*event]
if event[0] != "note":
new_event[1] = 0
new_event[2] = 0
has_next = False
has_pre = False
if i < len(event_list) - 1:
next_event = event_list[i + 1]
has_next = event[1] + event[2] == next_event[1] + next_event[2]
if notes_in_setup and i > 0:
pre_event = event_list[i - 1]
has_pre = event[1] + event[2] == pre_event[1] + pre_event[2]
if (event[0] == "note" and not has_next) or (notes_in_setup and not has_pre) :
event_list = sorted(setup_events.values(), key=lambda e: 1 if e[0] == "note" else 0) + event_list[i:]
break
else:
if event[0] == "note":
notes_in_setup = True
key = tuple(event[3:-1])
setup_events[key] = new_event
last_t1 = 0
for event in event_list:
cur_t1 = event[1]
event[1] = event[1] - last_t1
tokens = self.event2tokens(event)
if not tokens:
continue
midi_seq.append(tokens)
last_t1 = cur_t1
if add_bos_eos:
bos = [self.bos_id] + [self.pad_id] * (self.max_token_seq - 1)
eos = [self.eos_id] + [self.pad_id] * (self.max_token_seq - 1)
midi_seq = [bos] + midi_seq + [eos]
return midi_seq
def event2tokens(self, event):
name = event[0]
params = event[1:]
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]):
return []
tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]]
for i, p in enumerate(self.events[name])]
tokens += [self.pad_id] * (self.max_token_seq - len(tokens))
return tokens
def tokens2event(self, tokens):
if tokens[0] in self.id_events:
name = self.id_events[tokens[0]]
if len(tokens) <= len(self.events[name]):
return []
params = tokens[1:]
params = [params[i] - self.parameter_ids[p][0] for i, p in enumerate(self.events[name])]
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]):
return []
event = [name] + params
return event
return []
def detokenize(self, midi_seq):
ticks_per_beat = 480
tracks_dict = {}
t1 = 0
for tokens in midi_seq:
if tokens[0] in self.id_events:
event = self.tokens2event(tokens)
if not event:
continue
name = event[0]
if name == "set_tempo":
event[4] = self.bpm2tempo(event[4])
if event[0] == "note":
event[4] = int(event[4] * ticks_per_beat / 16)
t1 += event[1]
t = t1 * 16 + event[2]
t = int(t * ticks_per_beat / 16)
track_idx = event[3]
if track_idx not in tracks_dict:
tracks_dict[track_idx] = []
tracks_dict[track_idx].append([event[0], t] + event[4:])
tracks = list(tracks_dict.values())
for i in range(len(tracks)): # to eliminate note overlap
track = tracks[i]
track = sorted(track, key=lambda e: e[1])
last_note_t = {}
zero_len_notes = []
for e in reversed(track):
if e[0] == "note":
t, d, c, p = e[1:5]
key = (c, p)
if key in last_note_t:
d = min(d, max(last_note_t[key] - t, 0))
last_note_t[key] = t
e[2] = d
if d == 0:
zero_len_notes.append(e)
for e in zero_len_notes:
track.remove(e)
tracks[i] = track
return [ticks_per_beat, *tracks]
def midi2img(self, midi_score):
ticks_per_beat = midi_score[0]
notes = []
max_time = 1
track_num = len(midi_score[1:])
for track_idx, track in enumerate(midi_score[1:]):
for event in track:
t = round(16 * event[1] / ticks_per_beat)
if event[0] == "note":
d = max(1, round(16 * event[2] / ticks_per_beat))
c, p = event[3:5]
max_time = max(max_time, t + d + 1)
notes.append((track_idx, c, p, t, d))
img = np.zeros((128, max_time, 3), dtype=np.uint8)
colors = {(i, j): np.random.randint(50, 256, 3) for i in range(track_num) for j in range(16)}
for note in notes:
tr, c, p, t, d = note
img[p, t: t + d] = colors[(tr, c)]
img = PIL.Image.fromarray(np.flip(img, 0))
return img
def augment(self, midi_seq, max_pitch_shift=4, max_vel_shift=10, max_cc_val_shift=10, max_bpm_shift=10,
max_track_shift=0, max_channel_shift=16):
pitch_shift = random.randint(-max_pitch_shift, max_pitch_shift)
vel_shift = random.randint(-max_vel_shift, max_vel_shift)
cc_val_shift = random.randint(-max_cc_val_shift, max_cc_val_shift)
bpm_shift = random.randint(-max_bpm_shift, max_bpm_shift)
track_shift = random.randint(0, max_track_shift)
channel_shift = random.randint(0, max_channel_shift)
midi_seq_new = []
for tokens in midi_seq:
tokens_new = [*tokens]
if tokens[0] in self.id_events:
name = self.id_events[tokens[0]]
for i, pn in enumerate(self.events[name]):
if pn == "track":
tr = tokens[1 + i] - self.parameter_ids[pn][0]
tr += track_shift
tr = tr % self.event_parameters[pn]
tokens_new[1 + i] = self.parameter_ids[pn][tr]
elif pn == "channel":
c = tokens[1 + i] - self.parameter_ids[pn][0]
c0 = c
c += channel_shift
c = c % self.event_parameters[pn]
if c0 == 9:
c = 9
elif c == 9:
c = (9 + channel_shift) % self.event_parameters[pn]
tokens_new[1 + i] = self.parameter_ids[pn][c]
if name == "note":
c = tokens[5] - self.parameter_ids["channel"][0]
p = tokens[6] - self.parameter_ids["pitch"][0]
v = tokens[7] - self.parameter_ids["velocity"][0]
if c != 9: # no shift for drums
p += pitch_shift
if not 0 <= p < 128:
return midi_seq
v += vel_shift
v = max(1, min(127, v))
tokens_new[6] = self.parameter_ids["pitch"][p]
tokens_new[7] = self.parameter_ids["velocity"][v]
elif name == "control_change":
cc = tokens[5] - self.parameter_ids["controller"][0]
val = tokens[6] - self.parameter_ids["value"][0]
if cc in [1, 2, 7, 11]:
val += cc_val_shift
val = max(1, min(127, val))
tokens_new[6] = self.parameter_ids["value"][val]
elif name == "set_tempo":
bpm = tokens[4] - self.parameter_ids["bpm"][0]
bpm += bpm_shift
bpm = max(1, min(255, bpm))
tokens_new[4] = self.parameter_ids["bpm"][bpm]
midi_seq_new.append(tokens_new)
return midi_seq_new
def check_quality(self, midi_seq, alignment_min=0.4, tonality_min=0.8, piano_max=0.7, notes_bandwidth_min=3, notes_density_max=30, notes_density_min=2.5, total_notes_max=10000, total_notes_min=500, note_window_size=16):
total_notes = 0
channels = []
time_hist = [0] * 16
note_windows = {}
notes_sametime = []
notes_density_list = []
tonality_list = []
notes_bandwidth_list = []
instruments = {}
piano_channels = []
undef_instrument = False
abs_t1 = 0
last_t = 0
for tsi, tokens in enumerate(midi_seq):
event = self.tokens2event(tokens)
if not event:
continue
t1, t2, tr = event[1:4]
abs_t1 += t1
t = abs_t1 * 16 + t2
c = None
if event[0] == "note":
d, c, p, v = event[4:]
total_notes += 1
time_hist[t2] += 1
if c != 9: # ignore drum channel
if c not in instruments:
undef_instrument = True
note_windows.setdefault(abs_t1 // note_window_size, []).append(p)
if last_t != t:
notes_sametime = [(et, p_) for et, p_ in notes_sametime if et > last_t]
notes_sametime_p = [p_ for _, p_ in notes_sametime]
if len(notes_sametime) > 0:
notes_bandwidth_list.append(max(notes_sametime_p) - min(notes_sametime_p))
notes_sametime.append((t + d - 1, p))
elif event[0] == "patch_change":
c, p = event[4:]
instruments[c] = p
if p == 0 and c not in piano_channels:
piano_channels.append(c)
if c is not None and c not in channels:
channels.append(c)
last_t = t
reasons = []
if total_notes < total_notes_min:
reasons.append("total_min")
if total_notes > total_notes_max:
reasons.append("total_max")
if undef_instrument:
reasons.append("undef_instr")
if len(note_windows) == 0 and total_notes > 0:
reasons.append("drum_only")
if reasons:
return False, reasons
time_hist = sorted(time_hist, reverse=True)
alignment = sum(time_hist[:2]) / total_notes
for notes in note_windows.values():
key_hist = [0] * 12
for p in notes:
key_hist[p % 12] += 1
key_hist = sorted(key_hist, reverse=True)
tonality_list.append(sum(key_hist[:7]) / len(notes))
notes_density_list.append(len(notes) / note_window_size)
tonality_list = sorted(tonality_list)
tonality = sum(tonality_list)/len(tonality_list)
notes_bandwidth = sum(notes_bandwidth_list)/len(notes_bandwidth_list) if notes_bandwidth_list else 0
notes_density = max(notes_density_list) if notes_density_list else 0
piano_ratio = len(piano_channels) / len(channels)
if len(channels) <=3: # ignore piano threshold if it is a piano solo midi
piano_max = 1
if alignment < alignment_min: # check weather the notes align to the bars (because some midi files are recorded)
reasons.append("alignment")
if tonality < tonality_min: # check whether the music is tonal
reasons.append("tonality")
if notes_bandwidth < notes_bandwidth_min: # check whether music is melodic line only
reasons.append("bandwidth")
if not notes_density_min < notes_density < notes_density_max:
reasons.append("density")
if piano_ratio > piano_max: # check whether most instruments is piano (because some midi files don't have instruments assigned correctly)
reasons.append("piano")
return not reasons, reasons