Spaces:
Running
Running
import pickle | |
import torch | |
import transformers | |
import gradio as gr | |
# XLM model functions | |
import transformers | |
# Our model definition | |
class MultilingualClipEdited(torch.nn.Module): | |
def __init__(self, model_name, tokenizer_name, head_name, weights_dir='head_weights/', cache_dir=None,in_features=None,out_features=None): | |
super().__init__() | |
self.model_name = model_name | |
self.tokenizer_name = tokenizer_name | |
self.head_path = weights_dir + head_name | |
self.tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_name, cache_dir=cache_dir) | |
self.transformer = transformers.AutoModel.from_pretrained(model_name, cache_dir=cache_dir) | |
self.clip_head = torch.nn.Linear(in_features=in_features, out_features=out_features) | |
self._load_head() | |
def forward(self, txt): | |
txt_tok = self.tokenizer(txt, padding=True, return_tensors='pt') | |
embs = self.transformer(**txt_tok)[0] | |
att = txt_tok['attention_mask'] | |
embs = (embs * att.unsqueeze(2)).sum(dim=1) / att.sum(dim=1)[:, None] | |
return self.clip_head(embs) | |
def _load_head(self): | |
with open(self.head_path, 'rb') as f: | |
lin_weights = pickle.loads(f.read()) | |
self.clip_head.weight = torch.nn.Parameter(torch.tensor(lin_weights[0]).float().t()) | |
self.clip_head.bias = torch.nn.Parameter(torch.tensor(lin_weights[1]).float()) | |
AVAILABLE_MODELS = { | |
'bert-base-arabertv2-ViT-B-16-SigLIP-512-epoch-155-trained-2M':{ | |
'model_name': 'Arabic-Clip/bert-base-arabertv2-ViT-B-16-SigLIP-512-epoch-155-trained-2M', | |
'tokenizer_name': 'Arabic-Clip/bert-base-arabertv2-ViT-B-16-SigLIP-512-epoch-155-trained-2M', | |
'head_name': 'arabertv2-vit-B-16-siglibheads_of_the_model_arabertv2-ViT-B-16-SigLIP-512-155_.pickle' | |
}, | |
} | |
def load_model(name, cache_dir=None,in_features=None,out_features=None): | |
config = AVAILABLE_MODELS[name] | |
return MultilingualClipEdited(**config, cache_dir=cache_dir, in_features= in_features, out_features=out_features) |