Spaces:
Running
Running
import gradio as gr | |
import utils | |
# Araclip demo | |
with gr.Blocks() as demo_araclip: | |
gr.Markdown("## Choose the dataset") | |
dadtaset_select = gr.Radio(["XTD dataset", "Flicker 8k dataset"], value="XTD dataset", label="Dataset", info="Which dataset you would like to search in?") | |
gr.Markdown("## Input parameters") | |
txt = gr.Textbox(label="Text Query (Caption)") | |
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1) | |
with gr.Row(): | |
btn = gr.Button("Retrieve images", scale=1) | |
gr.Markdown("## Retrieved Images") | |
gallery = gr.Gallery( | |
label="Generated images", show_label=True, elem_id="gallery" | |
, columns=[5], rows=[1], object_fit="contain", height="auto") | |
with gr.Row(): | |
lables = gr.Label(label="Text image similarity") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("<div style='text-align: center; font-size: 24px; font-weight: bold;'>Data Retrieved based on Images Similarity</div>") | |
json_output = gr.JSON() | |
with gr.Column(scale=1): | |
gr.Markdown("<div style='text-align: center; font-size: 24px; font-weight: bold;'>Data Retrieved based on Text similarity</div>") | |
json_text = gr.JSON() | |
btn.click(utils.predict, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables, json_output, json_text]) | |
gr.Examples( | |
examples=[["تخطي لاعب فريق بيتسبرج بايرتس منطقة اللوحة الرئيسية في مباراة بدوري البيسبول", 5], | |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10], | |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]], | |
inputs=[txt, num, dadtaset_select], | |
outputs=[gallery,lables, json_output, json_text], | |
fn=utils.predict, | |
cache_examples=False, | |
) | |
# mclip demo | |
with gr.Blocks() as demo_mclip: | |
gr.Markdown("## Choose the dataset") | |
dadtaset_select = gr.Radio(["XTD dataset", "Flicker 8k dataset"], value="XTD dataset", label="Dataset", info="Which dataset you would like to search in?") | |
gr.Markdown("## Input parameters") | |
txt = gr.Textbox(label="Text Query (Caption)") | |
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1) | |
with gr.Row(): | |
btn = gr.Button("Retrieve images", scale=1) | |
gr.Markdown("## Retrieved Images") | |
gallery = gr.Gallery( | |
label="Generated images", show_label=True, elem_id="gallery_mclip" | |
, columns=[5], rows=[1], object_fit="contain", height="auto") | |
lables = gr.Label() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## Images Retrieved") | |
json_output = gr.JSON() | |
with gr.Column(scale=1): | |
gr.Markdown("## Text Retrieved") | |
json_text = gr.JSON() | |
btn.click(utils.predict_mclip, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables, json_output, json_text]) | |
gr.Examples( | |
examples=[["تخطي لاعب فريق بيتسبرج بايرتس منطقة اللوحة الرئيسية في مباراة بدوري البيسبول", 5], | |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10], | |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]], | |
inputs=[txt, num, dadtaset_select], | |
outputs=[gallery,lables, json_output, json_text], | |
fn=utils.predict_mclip, | |
cache_examples=False, | |
) | |
# Group the demos in a TabbedInterface | |
with gr.Blocks() as demo: | |
gr.Markdown("<font color=red size=10><center>AraClip: Arabic Image Retrieval Application</center></font>") | |
gr.TabbedInterface([demo_araclip, demo_mclip], ["Our Model", "Mclip model"]) | |
if __name__ == "__main__": | |
demo.launch() |