Spaces:
Running
Running
Upload 7 files
Browse files- .gitignore +16 -0
- app.py +46 -37
- logo_araclip.png +0 -0
- requirements.txt +95 -3
- utils.py +9 -21
.gitignore
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cashed_pickles/*
|
2 |
+
photos/*
|
3 |
+
.env/*
|
4 |
+
*/__pycache__/*
|
5 |
+
.gradio/*
|
6 |
+
*/.ipynb_checkpoints/*
|
7 |
+
*/.vscode/*
|
8 |
+
*/.git/*
|
9 |
+
*/.gitignore
|
10 |
+
*/.gitattributes
|
11 |
+
*/.gitmodules
|
12 |
+
*/.gitkeep
|
13 |
+
*/.gitlab-ci.yml
|
14 |
+
*/.gitlab/*
|
15 |
+
*/.github/*
|
16 |
+
*/
|
app.py
CHANGED
@@ -12,8 +12,8 @@ with gr.Blocks() as demo_araclip:
|
|
12 |
|
13 |
gr.Markdown("## Input parameters")
|
14 |
|
15 |
-
txt = gr.Textbox(label="Text Query
|
16 |
-
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1)
|
17 |
|
18 |
|
19 |
with gr.Row():
|
@@ -22,26 +22,15 @@ with gr.Blocks() as demo_araclip:
|
|
22 |
gr.Markdown("## Retrieved Images")
|
23 |
|
24 |
gallery = gr.Gallery(
|
25 |
-
|
26 |
, columns=[5], rows=[1], object_fit="contain", height="auto")
|
27 |
|
28 |
|
29 |
with gr.Row():
|
30 |
-
lables = gr.Label(label="Text
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
with gr.Column(scale=1):
|
35 |
-
gr.Markdown("<div style='text-align: center; font-size: 24px; font-weight: bold;'>Data Retrieved based on Images Similarity</div>")
|
36 |
-
|
37 |
-
json_output = gr.JSON()
|
38 |
-
|
39 |
-
with gr.Column(scale=1):
|
40 |
-
gr.Markdown("<div style='text-align: center; font-size: 24px; font-weight: bold;'>Data Retrieved based on Text similarity</div>")
|
41 |
-
json_text = gr.JSON()
|
42 |
-
|
43 |
-
|
44 |
-
btn.click(utils.predict, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables, json_output, json_text])
|
45 |
|
46 |
|
47 |
gr.Examples(
|
@@ -49,7 +38,7 @@ with gr.Blocks() as demo_araclip:
|
|
49 |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
50 |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
51 |
inputs=[txt, num, dadtaset_select],
|
52 |
-
outputs=[gallery,lables
|
53 |
fn=utils.predict,
|
54 |
cache_examples=False,
|
55 |
)
|
@@ -64,8 +53,8 @@ with gr.Blocks() as demo_mclip:
|
|
64 |
|
65 |
gr.Markdown("## Input parameters")
|
66 |
|
67 |
-
txt = gr.Textbox(label="Text Query
|
68 |
-
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1)
|
69 |
|
70 |
with gr.Row():
|
71 |
btn = gr.Button("Retrieve images", scale=1)
|
@@ -79,37 +68,57 @@ with gr.Blocks() as demo_mclip:
|
|
79 |
|
80 |
lables = gr.Label()
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
with gr.Column(scale=1):
|
85 |
-
gr.Markdown("## Images Retrieved")
|
86 |
-
json_output = gr.JSON()
|
87 |
-
|
88 |
-
with gr.Column(scale=1):
|
89 |
-
gr.Markdown("## Text Retrieved")
|
90 |
-
json_text = gr.JSON()
|
91 |
-
|
92 |
-
btn.click(utils.predict_mclip, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables, json_output, json_text])
|
93 |
|
94 |
gr.Examples(
|
95 |
examples=[["تخطي لاعب فريق بيتسبرج بايرتس منطقة اللوحة الرئيسية في مباراة بدوري البيسبول", 5],
|
96 |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
97 |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
98 |
inputs=[txt, num, dadtaset_select],
|
99 |
-
outputs=[gallery,lables
|
100 |
fn=utils.predict_mclip,
|
101 |
cache_examples=False,
|
102 |
)
|
103 |
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# Group the demos in a TabbedInterface
|
106 |
with gr.Blocks() as demo:
|
107 |
|
108 |
-
gr.
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
if __name__ == "__main__":
|
114 |
|
115 |
demo.launch()
|
|
|
12 |
|
13 |
gr.Markdown("## Input parameters")
|
14 |
|
15 |
+
txt = gr.Textbox(label="Text Query")
|
16 |
+
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1, step=1)
|
17 |
|
18 |
|
19 |
with gr.Row():
|
|
|
22 |
gr.Markdown("## Retrieved Images")
|
23 |
|
24 |
gallery = gr.Gallery(
|
25 |
+
show_label=False, elem_id="gallery"
|
26 |
, columns=[5], rows=[1], object_fit="contain", height="auto")
|
27 |
|
28 |
|
29 |
with gr.Row():
|
30 |
+
lables = gr.Label(label="Text-image similarity")
|
31 |
|
32 |
+
|
33 |
+
btn.click(utils.predict, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
gr.Examples(
|
|
|
38 |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
39 |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
40 |
inputs=[txt, num, dadtaset_select],
|
41 |
+
outputs=[gallery,lables],
|
42 |
fn=utils.predict,
|
43 |
cache_examples=False,
|
44 |
)
|
|
|
53 |
|
54 |
gr.Markdown("## Input parameters")
|
55 |
|
56 |
+
txt = gr.Textbox(label="Text Query")
|
57 |
+
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1, step=1)
|
58 |
|
59 |
with gr.Row():
|
60 |
btn = gr.Button("Retrieve images", scale=1)
|
|
|
68 |
|
69 |
lables = gr.Label()
|
70 |
|
71 |
+
btn.click(utils.predict_mclip, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
gr.Examples(
|
74 |
examples=[["تخطي لاعب فريق بيتسبرج بايرتس منطقة اللوحة الرئيسية في مباراة بدوري البيسبول", 5],
|
75 |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
76 |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
77 |
inputs=[txt, num, dadtaset_select],
|
78 |
+
outputs=[gallery,lables],
|
79 |
fn=utils.predict_mclip,
|
80 |
cache_examples=False,
|
81 |
)
|
82 |
|
83 |
|
84 |
+
# Define custom CSS to increase the size of the tabs
|
85 |
+
custom_css = """
|
86 |
+
.gr-tabbed-interface .gr-tab {
|
87 |
+
font-size: 50px; /* Increase the font size */
|
88 |
+
padding: 10px; /* Increase the padding */
|
89 |
+
}
|
90 |
+
"""
|
91 |
+
|
92 |
# Group the demos in a TabbedInterface
|
93 |
with gr.Blocks() as demo:
|
94 |
|
95 |
+
# gr.Image("statics/logo_araclip.png")
|
96 |
+
gr.Markdown("""
|
97 |
+
<center> <img src="/file=statics/logo_araclip.png" alt="Imgur" style="width:200px"></center>
|
98 |
+
""")
|
99 |
+
gr.Markdown("<center> <font color=red size=10>AraClip: Arabic Image Retrieval Application</font></center>")
|
100 |
+
|
101 |
+
gr.Markdown("""
|
102 |
+
<font size=4> To run the demo 🤗, please select the model, then the dataset you would like to search in, enter a text query, and specify the number of retrieved images.</font>
|
103 |
+
|
104 |
+
""")
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
gr.TabbedInterface([demo_araclip, demo_mclip], ["Our Model", "Mclip model"], css=custom_css)
|
109 |
+
|
110 |
+
gr.Markdown(
|
111 |
+
"""
|
112 |
+
If you find this work helpful, please help us to ⭐ the repositories in <a href='https://github.com/Arabic-Clip' target='_blank'>Github Organization</a>. Thank you!
|
113 |
+
|
114 |
+
---
|
115 |
+
📝 **Citation**
|
116 |
+
|
117 |
+
To be shared soon.
|
118 |
+
|
119 |
+
📋 **License**
|
120 |
+
"""
|
121 |
+
)
|
122 |
if __name__ == "__main__":
|
123 |
|
124 |
demo.launch()
|
logo_araclip.png
ADDED
requirements.txt
CHANGED
@@ -1,5 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
open-clip-torch==2.23.0
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
torch==2.1.1
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
altair==5.2.0
|
3 |
+
annotated-types==0.6.0
|
4 |
+
anyio==3.7.1
|
5 |
+
attrs==23.1.0
|
6 |
+
certifi==2023.11.17
|
7 |
+
charset-normalizer==3.3.2
|
8 |
+
click==8.1.7
|
9 |
+
colorama==0.4.6
|
10 |
+
contourpy==1.1.1
|
11 |
+
cycler==0.12.1
|
12 |
+
exceptiongroup==1.2.0
|
13 |
+
fastapi==0.105.0
|
14 |
+
ffmpy==0.3.1
|
15 |
+
filelock==3.13.1
|
16 |
+
fonttools==4.46.0
|
17 |
+
fsspec==2023.12.2
|
18 |
+
ftfy==6.1.3
|
19 |
+
gradio==4.38.1
|
20 |
+
gradio-client==1.1.0
|
21 |
+
h11==0.14.0
|
22 |
+
httpcore==1.0.5
|
23 |
+
httpx==0.27.0
|
24 |
+
huggingface-hub==0.19.4
|
25 |
+
idna==3.6
|
26 |
+
importlib-resources==6.1.1
|
27 |
+
Jinja2==3.1.2
|
28 |
+
jsonschema==4.20.0
|
29 |
+
jsonschema-specifications==2023.11.2
|
30 |
+
kiwisolver==1.4.5
|
31 |
+
markdown-it-py==3.0.0
|
32 |
+
MarkupSafe==2.1.3
|
33 |
+
matplotlib==3.7.4
|
34 |
+
mdurl==0.1.2
|
35 |
+
mpmath==1.3.0
|
36 |
+
multilingual-clip==1.0.10
|
37 |
+
networkx==3.1
|
38 |
+
numpy==1.24.4
|
39 |
+
nvidia-cublas-cu12==12.1.3.1
|
40 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
41 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
42 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
43 |
+
nvidia-cudnn-cu12==8.9.2.26
|
44 |
+
nvidia-cufft-cu12==11.0.2.54
|
45 |
+
nvidia-curand-cu12==10.3.2.106
|
46 |
+
nvidia-cusolver-cu12==11.4.5.107
|
47 |
+
nvidia-cusparse-cu12==12.1.0.106
|
48 |
+
nvidia-nccl-cu12==2.18.1
|
49 |
+
nvidia-nvjitlink-cu12==12.3.101
|
50 |
+
nvidia-nvtx-cu12==12.1.105
|
51 |
open-clip-torch==2.23.0
|
52 |
+
orjson==3.9.10
|
53 |
+
packaging==23.2
|
54 |
+
pandas==2.0.3
|
55 |
+
Pillow==10.1.0
|
56 |
+
pkgutil-resolve-name==1.3.10
|
57 |
+
protobuf==4.25.1
|
58 |
+
pydantic==2.5.2
|
59 |
+
pydantic-core==2.14.5
|
60 |
+
pydub==0.25.1
|
61 |
+
pygments==2.17.2
|
62 |
+
pyparsing==3.1.1
|
63 |
+
python-dateutil==2.8.2
|
64 |
+
python-multipart==0.0.9
|
65 |
+
pytz==2023.3.post1
|
66 |
+
PyYAML==6.0.1
|
67 |
+
referencing==0.32.0
|
68 |
+
regex==2023.10.3
|
69 |
+
requests==2.31.0
|
70 |
+
rich==13.7.0
|
71 |
+
rpds-py==0.13.2
|
72 |
+
ruff==0.5.4
|
73 |
+
safetensors==0.4.1
|
74 |
+
semantic-version==2.10.0
|
75 |
+
sentencepiece==0.1.99
|
76 |
+
shellingham==1.5.4
|
77 |
+
six==1.16.0
|
78 |
+
sniffio==1.3.0
|
79 |
+
starlette==0.27.0
|
80 |
+
sympy==1.12
|
81 |
+
timm==0.9.12
|
82 |
+
tokenizers==0.15.0
|
83 |
+
tomlkit==0.12.0
|
84 |
+
toolz==0.12.0
|
85 |
torch==2.1.1
|
86 |
+
torchvision==0.16.1
|
87 |
+
tqdm==4.66.1
|
88 |
+
transformers==4.36.1
|
89 |
+
triton==2.1.0
|
90 |
+
typer==0.12.3
|
91 |
+
typing-extensions==4.9.0
|
92 |
+
tzdata==2023.3
|
93 |
+
urllib3==2.1.0
|
94 |
+
uvicorn==0.24.0.post1
|
95 |
+
wcwidth==0.2.12
|
96 |
+
websockets==11.0.3
|
97 |
+
zipp==3.17.0
|
utils.py
CHANGED
@@ -106,32 +106,20 @@ def find_image(language_model,clip_model, text_query, dataset, image_features, t
|
|
106 |
probs = txt_logits.softmax(dim=-1).cpu().detach().numpy().T
|
107 |
|
108 |
file_paths = []
|
109 |
-
labels
|
110 |
|
111 |
for i in range(1, num+1):
|
112 |
idx = np.argsort(probs, axis=0)[-i, 0]
|
113 |
path = images_path + dataset.get_image_name(idx)
|
114 |
|
115 |
-
path_l = (path,
|
116 |
|
117 |
labels[f" Image # {i}"] = probs[idx]
|
118 |
-
json_data[f" Image # {i}"] = sorted_data[idx]
|
119 |
|
120 |
file_paths.append(path_l)
|
121 |
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
for _, txt_logits_full in text_logits.items():
|
126 |
-
|
127 |
-
probs_text = txt_logits_full.softmax(dim=-1).cpu().detach().numpy().T
|
128 |
-
|
129 |
-
for j in range(1, num+1):
|
130 |
-
|
131 |
-
idx = np.argsort(probs_text, axis=0)[-j, 0]
|
132 |
-
json_text[f" Text # {j}"] = sorted_data[idx]
|
133 |
-
|
134 |
-
return file_paths, labels, json_data, json_text
|
135 |
|
136 |
|
137 |
|
@@ -163,12 +151,12 @@ araclip = AraClip()
|
|
163 |
def predict(text, num, dadtaset_select):
|
164 |
|
165 |
if dadtaset_select == "XTD dataset":
|
166 |
-
image_paths, labels
|
167 |
|
168 |
else:
|
169 |
-
image_paths, labels
|
170 |
|
171 |
-
return image_paths, labels
|
172 |
|
173 |
|
174 |
class Mclip():
|
@@ -203,10 +191,10 @@ def predict_mclip(text, num, dadtaset_select):
|
|
203 |
|
204 |
|
205 |
if dadtaset_select == "XTD dataset":
|
206 |
-
image_paths, labels
|
207 |
|
208 |
else:
|
209 |
-
image_paths, labels
|
210 |
|
211 |
|
212 |
-
return image_paths, labels
|
|
|
106 |
probs = txt_logits.softmax(dim=-1).cpu().detach().numpy().T
|
107 |
|
108 |
file_paths = []
|
109 |
+
labels = {}
|
110 |
|
111 |
for i in range(1, num+1):
|
112 |
idx = np.argsort(probs, axis=0)[-i, 0]
|
113 |
path = images_path + dataset.get_image_name(idx)
|
114 |
|
115 |
+
path_l = (path, "")
|
116 |
|
117 |
labels[f" Image # {i}"] = probs[idx]
|
|
|
118 |
|
119 |
file_paths.append(path_l)
|
120 |
|
121 |
|
122 |
+
return file_paths, labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
|
125 |
|
|
|
151 |
def predict(text, num, dadtaset_select):
|
152 |
|
153 |
if dadtaset_select == "XTD dataset":
|
154 |
+
image_paths, labels = find_image(araclip.language_model,araclip.clip_model, text, araclip.load_xtd_dataset(), araclip.load_pickle_file("cashed_pickles/XTD_pickles/araclip/image_features_XTD_1000_images_arabert_siglib_best_model.pickle") , araclip.load_pickle_file("cashed_pickles/XTD_pickles/araclip/image_features_XTD_1000_images_arabert_siglib_best_model.pickle"), araclip.sorted_data_xtd, 'photos/XTD10_dataset/', num=int(num))
|
155 |
|
156 |
else:
|
157 |
+
image_paths, labels = find_image(araclip.language_model,araclip.clip_model, text, araclip.load_flicker8k_dataset(), araclip.load_pickle_file("cashed_pickles/flicker_8k/araclip/image_features_flicker_8k_images_arabert_siglib_best_model.pickle") , araclip.load_pickle_file("cashed_pickles/flicker_8k/araclip/text_features_flicker_8k_images_arabert_siglib_best_model.pickle"), araclip.sorted_data_flicker8k, "photos/Flicker8k_Dataset/", num=int(num))
|
158 |
|
159 |
+
return image_paths, labels
|
160 |
|
161 |
|
162 |
class Mclip():
|
|
|
191 |
|
192 |
|
193 |
if dadtaset_select == "XTD dataset":
|
194 |
+
image_paths, labels = find_image(mclip.language_model_mclip,mclip.clip_model_mclip, text, mclip.load_xtd_dataset() , mclip.load_pickle_file("cashed_pickles/XTD_pickles/mclip/image_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle") , mclip.load_pickle_file("cashed_pickles/XTD_pickles/mclip/text_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle") , mclip.sorted_data_xtd , 'photos/XTD10_dataset/', num=int(num))
|
195 |
|
196 |
else:
|
197 |
+
image_paths, labels = find_image(mclip.language_model_mclip,mclip.clip_model_mclip, text, mclip.load_flicker8k_dataset() , mclip.load_pickle_file("cashed_pickles/flicker_8k/mclip/image_features_flicker_8k_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle") , mclip.load_pickle_file("cashed_pickles/flicker_8k/mclip/text_features_flicker_8k_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle") , mclip.sorted_data_flicker8k , 'photos/Flicker8k_Dataset/', num=int(num))
|
198 |
|
199 |
|
200 |
+
return image_paths, labels
|