|
import gradio as gr |
|
import asyncio |
|
from huggingface_hub import AsyncInferenceClient |
|
import os |
|
hf = os.getenv("HF") |
|
client = AsyncInferenceClient("google/siglip-base-patch16-224", token=hf) |
|
|
|
def image_classifier(inp): |
|
class_names = ["0", "1"] |
|
inp.save("why.png") |
|
sunflower_path = "why.png" |
|
hf = os.getenv("HF") |
|
r = asyncio.run(client.zero_shot_image_classification("why.png", candidate_labels=["mouth or teeth", "not mouth"])) |
|
c = {} |
|
a = r[0]["score"] + r[1]["score"] |
|
c[r[0]["label"]] = r[0]["score"] / a |
|
c[r[1]["label"]] = r[1]["score"] / a |
|
return c |
|
|
|
|
|
demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label") |
|
demo.launch(debug=True) |
|
|