Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -35,90 +35,117 @@ app.add_middleware(
|
|
35 |
from joblib import dump
|
36 |
|
37 |
def train_the_model(data):
|
38 |
-
data = data
|
39 |
-
|
40 |
-
# Select columns
|
41 |
-
selected_columns = ['customer_name', 'customer_address', 'customer_phone',
|
42 |
-
'customer_email', 'cod', 'weight',
|
43 |
-
'origin_city.name', 'destination_city.name', 'status.name']
|
44 |
-
|
45 |
-
# Handling missing values
|
46 |
-
data_filled = data[selected_columns].fillna('Missing')
|
47 |
-
|
48 |
-
# Encoding categorical variables
|
49 |
-
encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
|
50 |
-
for col, encoder in encoders.items():
|
51 |
-
data_filled[col] = encoder.fit_transform(data_filled[col])
|
52 |
-
|
53 |
-
# Splitting the dataset
|
54 |
-
X = data_filled.drop('status.name', axis=1)
|
55 |
-
y = data_filled['status.name']
|
56 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
57 |
-
|
58 |
-
# Setup the hyperparameter grid to search
|
59 |
-
param_grid = {
|
60 |
-
'max_depth': [3, 4, 5],
|
61 |
-
'learning_rate': [0.01, 0.1, 0.4],
|
62 |
-
'n_estimators': [100, 200, 300],
|
63 |
-
'subsample': [0.8, 0.9, 1],
|
64 |
-
'colsample_bytree': [0.3, 0.7]
|
65 |
-
}
|
66 |
-
|
67 |
-
# Initialize the classifier
|
68 |
-
xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
|
69 |
-
|
70 |
-
# Setup GridSearchCV
|
71 |
-
grid_search = GridSearchCV(xgb, param_grid, cv=10, n_jobs=-1, scoring='accuracy')
|
72 |
-
|
73 |
-
# Fit the grid search to the data
|
74 |
-
grid_search.fit(X_train, y_train)
|
75 |
-
|
76 |
-
# Get the best parameters
|
77 |
-
best_params = grid_search.best_params_
|
78 |
-
print("Best parameters:", best_params)
|
79 |
-
|
80 |
-
# Train the model with best parameters
|
81 |
-
best_xgb = XGBClassifier(**best_params, use_label_encoder=False, eval_metric='logloss')
|
82 |
-
best_xgb.fit(X_train, y_train)
|
83 |
-
|
84 |
-
# Predict on the test set
|
85 |
-
y_pred = best_xgb.predict(X_test)
|
86 |
-
y_pred_proba = best_xgb.predict_proba(X_test)
|
87 |
-
|
88 |
-
# Evaluate the model
|
89 |
-
accuracy = accuracy_score(y_test, y_pred)
|
90 |
-
classification_rep = classification_report(y_test, y_pred)
|
91 |
-
|
92 |
-
# Print the results
|
93 |
-
print("Accuracy:", accuracy)
|
94 |
-
print("Classification Report:\n", classification_report(y_test, y_pred))
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
print("data fetcher running.....")
|
111 |
|
112 |
# Initialize an empty DataFrame to store the combined data
|
113 |
combined_df = pd.DataFrame()
|
114 |
|
115 |
# Update the payload for each page
|
116 |
-
url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate=
|
117 |
|
118 |
payload = {}
|
119 |
headers = {
|
120 |
'Accept': 'application/json',
|
121 |
-
'X-Tenant': 'royalexpress'
|
122 |
}
|
123 |
|
124 |
response = requests.request("GET", url, headers=headers, data=payload)
|
@@ -127,8 +154,10 @@ async def your_continuous_function(page: int):
|
|
127 |
json_response = response.json()
|
128 |
# Extracting 'data' for conversion
|
129 |
data = json_response['data']
|
130 |
-
|
|
|
131 |
df = pd.json_normalize(data)
|
|
|
132 |
|
133 |
# Concatenate the current page's DataFrame with the combined DataFrame
|
134 |
combined_df = pd.concat([combined_df, df], ignore_index=True)
|
@@ -139,8 +168,8 @@ async def your_continuous_function(page: int):
|
|
139 |
|
140 |
train_the_model(data)
|
141 |
|
142 |
-
return "model trained with
|
143 |
|
144 |
@app.get("/test_api")
|
145 |
async def test_api():
|
146 |
-
return "
|
|
|
35 |
from joblib import dump
|
36 |
|
37 |
def train_the_model(data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
try:
|
40 |
+
new_data = data
|
41 |
+
encoders = load('encoders.joblib')
|
42 |
+
xgb_model = load('xgb_model.joblib')
|
43 |
+
selected_columns = ['customer_name', 'customer_address', 'customer_phone',
|
44 |
+
'customer_email', 'cod', 'weight', 'origin_city.name',
|
45 |
+
'destination_city.name', 'status.name']
|
46 |
+
new_data_filled = new_data[selected_columns].fillna('Missing')
|
47 |
+
for col, encoder in encoders.items():
|
48 |
+
if col in new_data_filled.columns:
|
49 |
+
unseen_categories = set(new_data_filled[col]) - set(encoder.classes_)
|
50 |
+
if unseen_categories:
|
51 |
+
for category in unseen_categories:
|
52 |
+
encoder.classes_ = np.append(encoder.classes_, category)
|
53 |
+
new_data_filled[col] = encoder.transform(new_data_filled[col])
|
54 |
+
else:
|
55 |
+
new_data_filled[col] = encoder.transform(new_data_filled[col])
|
56 |
+
X_new = new_data_filled.drop('status.name', axis=1)
|
57 |
+
y_new = new_data_filled['status.name']
|
58 |
+
xgb_model.fit(X_new, y_new)
|
59 |
+
dump(xgb_model, 'xgb_model.joblib')
|
60 |
+
print("Model updated with new data.")
|
61 |
+
updated_model_accuracy = evaluate_model(xgb_model, X_test, y_test)
|
62 |
+
print("Updated model accuracy:", updated_model_accuracy)
|
63 |
+
except:
|
64 |
+
data = data
|
65 |
+
|
66 |
+
# Select columns
|
67 |
+
selected_columns = ['customer_name', 'customer_address', 'customer_phone',
|
68 |
+
'customer_email', 'cod', 'weight',
|
69 |
+
'origin_city.name', 'destination_city.name', 'status.name']
|
70 |
+
|
71 |
+
# Handling missing values
|
72 |
+
data_filled = data[selected_columns].fillna('Missing')
|
73 |
+
|
74 |
+
# Encoding categorical variables
|
75 |
+
encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
|
76 |
+
for col, encoder in encoders.items():
|
77 |
+
data_filled[col] = encoder.fit_transform(data_filled[col])
|
78 |
+
|
79 |
+
# Splitting the dataset
|
80 |
+
X = data_filled.drop('status.name', axis=1)
|
81 |
+
y = data_filled['status.name']
|
82 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
83 |
+
|
84 |
+
# Setup the hyperparameter grid to search
|
85 |
+
param_grid = {
|
86 |
+
'max_depth': [3, 4, 5],
|
87 |
+
'learning_rate': [0.01, 0.1, 0.4],
|
88 |
+
'n_estimators': [100, 200, 300],
|
89 |
+
'subsample': [0.8, 0.9, 1],
|
90 |
+
'colsample_bytree': [0.3, 0.7]
|
91 |
+
}
|
92 |
+
|
93 |
+
# Initialize the classifier
|
94 |
+
xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
|
95 |
+
|
96 |
+
# Setup GridSearchCV
|
97 |
+
grid_search = GridSearchCV(xgb, param_grid, cv=10, n_jobs=-1, scoring='accuracy')
|
98 |
+
|
99 |
+
# Fit the grid search to the data
|
100 |
+
grid_search.fit(X_train, y_train)
|
101 |
+
|
102 |
+
# Get the best parameters
|
103 |
+
best_params = grid_search.best_params_
|
104 |
+
print("Best parameters:", best_params)
|
105 |
+
|
106 |
+
# Train the model with best parameters
|
107 |
+
best_xgb = XGBClassifier(**best_params, use_label_encoder=False, eval_metric='logloss')
|
108 |
+
best_xgb.fit(X_train, y_train)
|
109 |
+
|
110 |
+
# Predict on the test set
|
111 |
+
y_pred = best_xgb.predict(X_test)
|
112 |
+
y_pred_proba = best_xgb.predict_proba(X_test)
|
113 |
+
|
114 |
+
# Evaluate the model
|
115 |
+
accuracy = accuracy_score(y_test, y_pred)
|
116 |
+
classification_rep = classification_report(y_test, y_pred)
|
117 |
+
|
118 |
+
# Print the results
|
119 |
+
print("Accuracy:", accuracy)
|
120 |
+
print("Classification Report:\n", classification_report(y_test, y_pred))
|
121 |
+
|
122 |
+
|
123 |
+
# Save the model
|
124 |
+
model_filename = 'xgb_model.joblib'
|
125 |
+
dump(best_xgb, model_filename)
|
126 |
+
|
127 |
+
# Save the encoders
|
128 |
+
encoders_filename = 'encoders.joblib'
|
129 |
+
dump(encoders, encoders_filename)
|
130 |
+
|
131 |
+
print(f"Model saved as {model_filename}")
|
132 |
+
print(f"Encoders saved as {encoders_filename}")
|
133 |
+
print("new base model trained")
|
134 |
+
|
135 |
+
@app.get("/trigger_the_data_fecher")
|
136 |
+
async def your_continuous_function(page: int,paginate: int,Tenant: str):
|
137 |
print("data fetcher running.....")
|
138 |
|
139 |
# Initialize an empty DataFrame to store the combined data
|
140 |
combined_df = pd.DataFrame()
|
141 |
|
142 |
# Update the payload for each page
|
143 |
+
url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate="+str(paginate)+"&page="+str(page)
|
144 |
|
145 |
payload = {}
|
146 |
headers = {
|
147 |
'Accept': 'application/json',
|
148 |
+
'X-Tenant': Tenant #'royalexpress'
|
149 |
}
|
150 |
|
151 |
response = requests.request("GET", url, headers=headers, data=payload)
|
|
|
154 |
json_response = response.json()
|
155 |
# Extracting 'data' for conversion
|
156 |
data = json_response['data']
|
157 |
+
data_count = len(data)
|
158 |
+
|
159 |
df = pd.json_normalize(data)
|
160 |
+
|
161 |
|
162 |
# Concatenate the current page's DataFrame with the combined DataFrame
|
163 |
combined_df = pd.concat([combined_df, df], ignore_index=True)
|
|
|
168 |
|
169 |
train_the_model(data)
|
170 |
|
171 |
+
return "model trained with page number: "+str(page)+" data count :"+str(data_count)
|
172 |
|
173 |
@app.get("/test_api")
|
174 |
async def test_api():
|
175 |
+
return "api_working"
|