Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -166,11 +166,78 @@ async def your_continuous_function(page: int,paginate: int,Tenant: str):
|
|
166 |
|
167 |
train_the_model(data)
|
168 |
|
169 |
-
return "model trained
|
|
|
|
|
|
|
170 |
|
171 |
@app.get("/get_latest_model_updated_time")
|
172 |
async def model_updated_time():
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
train_the_model(data)
|
168 |
|
169 |
+
return {"model trained details":{"page_number":page,"data_count":data_count}}
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
|
174 |
@app.get("/get_latest_model_updated_time")
|
175 |
async def model_updated_time():
|
176 |
+
try:
|
177 |
+
m_time_encoder = os.path.getmtime('encoders.joblib')
|
178 |
+
m_time_model = os.path.getmtime('xgb_model.joblib')
|
179 |
+
return {"base model created time ":datetime.datetime.fromtimestamp(m_time_encoder),
|
180 |
+
"last model updated time":datetime.datetime.fromtimestamp(m_time_model)}
|
181 |
+
except:
|
182 |
+
return {"no model found so first trained the model using data fecther"}
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
# Endpoint for making predictions
|
189 |
+
@app.post("/predict")
|
190 |
+
def predict(customer_name: str,
|
191 |
+
customer_address: str,
|
192 |
+
customer_phone: str,
|
193 |
+
customer_email: str,
|
194 |
+
cod:str,
|
195 |
+
weight: str,
|
196 |
+
pickup_address: str,
|
197 |
+
origin_city_name: str,
|
198 |
+
destination_city_name: str,
|
199 |
+
origin_country: str):
|
200 |
+
|
201 |
+
try:
|
202 |
+
# Load your trained model and encoders
|
203 |
+
xgb_model = load('xgb_model.joblib')
|
204 |
+
encoders = load('encoders.joblib')
|
205 |
+
except:
|
206 |
+
return {"no model found so first trained the model using data fecther"}
|
207 |
+
|
208 |
+
|
209 |
+
# Function to handle unseen labels during encoding
|
210 |
+
def safe_transform(encoder, column):
|
211 |
+
classes = encoder.classes_
|
212 |
+
return [encoder.transform([x])[0] if x in classes else -1 for x in column]
|
213 |
+
|
214 |
+
# Convert input data to DataFrame
|
215 |
+
input_data = {
|
216 |
+
'customer_name': customer_name,
|
217 |
+
'customer_address': customer_address,
|
218 |
+
'customer_phone': customer_phone,
|
219 |
+
'customer_email': customer_email,
|
220 |
+
'cod': float(cod),
|
221 |
+
'weight': float(weight),
|
222 |
+
'origin_city.name':origin_city_name,
|
223 |
+
'destination_city.name':destination_city_name
|
224 |
+
}
|
225 |
+
input_df = pd.DataFrame([input_data])
|
226 |
+
|
227 |
+
# Encode categorical variables using the same encoders used during training
|
228 |
+
for col in input_df.columns:
|
229 |
+
if col in encoders:
|
230 |
+
input_df[col] = safe_transform(encoders[col], input_df[col])
|
231 |
+
|
232 |
+
# Predict and obtain probabilities
|
233 |
+
pred = xgb_model.predict(input_df)
|
234 |
+
pred_proba = xgb_model.predict_proba(input_df)
|
235 |
+
|
236 |
+
# Output
|
237 |
+
predicted_status = "Unknown" if pred[0] == -1 else encoders['status.name'].inverse_transform([pred])[0]
|
238 |
+
probability = pred_proba[0][pred[0]] * 100 if pred[0] != -1 else "Unknown"
|
239 |
+
|
240 |
+
if predicted_status == "RETURN TO CLIENT":
|
241 |
+
probability = 100 - probability
|
242 |
+
|
243 |
+
return {"Probability": round(probability,2)}
|