# from huggingface_hub import InferenceClient # import gradio as gr # import os # hf_token = os.getenv("HF_TOKEN") # client = InferenceClient("Aragoner/OrpoLlama-3-8B", token=hf_token) # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() import gradio as gr import os import spaces from transformers import GemmaTokenizer, AutoModelForCausalLM from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) # DESCRIPTION = ''' #
#

Meta Llama3 8B

#

This Space demonstrates the instruction-tuned model Meta Llama3 8b Chat. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!

#

🔎 For more details about the Llama3 release and how to use the model with transformers, take a look at our blog post.

#

🦕 Looking for an even more powerful model? Check out the Hugging Chat integration for Meta Llama 3 70b

#
# ''' # LICENSE = """ #

# --- # Built with Meta Llama 3 # """ # PLACEHOLDER = """ #

# #

Meta llama3

#

Ask me anything...

#
# """ css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } """ # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("Aragoner/OrpoLlama-3-8B") model = AutoModelForCausalLM.from_pretrained("Aragoner/OrpoLlama-3-8B", device_map="auto") # to("cuda:0") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] @spaces.GPU(duration=120) def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int ) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids= input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) #print(outputs) yield "".join(outputs) # Gradio block # chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') chatbot=gr.Chatbot(height=450, label='Gradio ChatBot') with gr.Blocks(fill_height=True, css=css) as demo: # gr.Markdown(DESCRIPTION) # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, # additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), # additional_inputs=[ # gr.Slider(minimum=0, # maximum=1, # step=0.1, # value=0.95, # label="Temperature", # render=False), # gr.Slider(minimum=128, # maximum=4096, # step=1, # value=512, # label="Max new tokens", # render=False ), # ], examples=[ ["What's the last book or podcast that really grabbed your attention?"], ["Do you have a favorite type of weather or season? Why?"], ["Oh, I just saw the best meme - have you seen it?"] # ['Write a pun-filled happy birthday message to my friend Alex.'], # ['Justify why a penguin might make a good king of the jungle.'] ], cache_examples=False, ) # gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()