# from huggingface_hub import InferenceClient
# import gradio as gr
# import os
# hf_token = os.getenv("HF_TOKEN")
# client = InferenceClient("Aragoner/OrpoLlama-3-8B", token=hf_token)
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# DESCRIPTION = '''
#
#
Meta Llama3 8B
#
This Space demonstrates the instruction-tuned model Meta Llama3 8b Chat. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!
#
🔎 For more details about the Llama3 release and how to use the model with transformers
, take a look at our blog post.
#
🦕 Looking for an even more powerful model? Check out the Hugging Chat integration for Meta Llama 3 70b
#
# '''
# LICENSE = """
#
# ---
# Built with Meta Llama 3
# """
# PLACEHOLDER = """
#
#
![](https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg)
#
Meta llama3
#
Ask me anything...
#
# """
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Aragoner/OrpoLlama-3-8B")
model = AutoModelForCausalLM.from_pretrained("Aragoner/OrpoLlama-3-8B", device_map="auto") # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
#print(outputs)
yield "".join(outputs)
# Gradio block
# chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
chatbot=gr.Chatbot(height=450, label='Gradio ChatBot')
with gr.Blocks(fill_height=True, css=css) as demo:
# gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
# additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
# additional_inputs=[
# gr.Slider(minimum=0,
# maximum=1,
# step=0.1,
# value=0.95,
# label="Temperature",
# render=False),
# gr.Slider(minimum=128,
# maximum=4096,
# step=1,
# value=512,
# label="Max new tokens",
# render=False ),
# ],
examples=[
["What's the last book or podcast that really grabbed your attention?"],
["Do you have a favorite type of weather or season? Why?"],
["Oh, I just saw the best meme - have you seen it?"]
# ['Write a pun-filled happy birthday message to my friend Alex.'],
# ['Justify why a penguin might make a good king of the jungle.']
],
cache_examples=False,
)
# gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()