Spaces:
Sleeping
Sleeping
Update backend/semantic_search.py
Browse files- backend/semantic_search.py +10 -24
backend/semantic_search.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
import lancedb
|
2 |
-
import os
|
3 |
import gradio as gr
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
import torch
|
7 |
-
import time
|
8 |
import os
|
9 |
-
from pathlib import Path
|
10 |
|
11 |
db = lancedb.connect(".lancedb")
|
12 |
|
@@ -19,39 +16,28 @@ CROSS_ENCODER = os.getenv("CROSS_ENCODER")
|
|
19 |
retriever = SentenceTransformer(os.getenv("EMB_MODEL"))
|
20 |
cross_encoder = AutoModelForSequenceClassification.from_pretrained(CROSS_ENCODER)
|
21 |
cross_encoder.eval()
|
|
|
22 |
cross_encoder_tokenizer = AutoTokenizer.from_pretrained(CROSS_ENCODER)
|
23 |
|
24 |
|
25 |
-
def
|
26 |
-
|
27 |
-
tokens = cross_encoder_tokenizer([query] * len(documents), documents, padding=True, truncation=True, return_tensors="pt")
|
28 |
with torch.no_grad():
|
29 |
-
|
30 |
-
|
31 |
-
documents = sorted(zip(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
# def retrieve(query, k):
|
36 |
-
# query_vec = retriever.encode(query)
|
37 |
-
# try:
|
38 |
-
# documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list()
|
39 |
-
# documents = [doc[TEXT_COLUMN] for doc in documents]
|
40 |
-
#
|
41 |
-
# return documents
|
42 |
-
#
|
43 |
-
# except Exception as e:
|
44 |
-
# raise gr.Error(str(e))
|
45 |
|
46 |
|
47 |
-
def retrieve(query, top_k_retriever=
|
48 |
query_vec = retriever.encode(query)
|
49 |
try:
|
50 |
documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(top_k_retriever).to_list()
|
51 |
documents = [doc[TEXT_COLUMN] for doc in documents]
|
52 |
|
53 |
if use_reranking:
|
54 |
-
documents =
|
55 |
|
56 |
return documents
|
57 |
|
|
|
1 |
import lancedb
|
|
|
2 |
import gradio as gr
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import torch
|
|
|
6 |
import os
|
|
|
7 |
|
8 |
db = lancedb.connect(".lancedb")
|
9 |
|
|
|
16 |
retriever = SentenceTransformer(os.getenv("EMB_MODEL"))
|
17 |
cross_encoder = AutoModelForSequenceClassification.from_pretrained(CROSS_ENCODER)
|
18 |
cross_encoder.eval()
|
19 |
+
|
20 |
cross_encoder_tokenizer = AutoTokenizer.from_pretrained(CROSS_ENCODER)
|
21 |
|
22 |
|
23 |
+
def reranking(query, list_of_documents, k):
|
24 |
+
received_tokens = cross_encoder_tokenizer([query] * len(list_of_documents), list_of_documents, padding=True, truncation=True, return_tensors="pt")
|
|
|
25 |
with torch.no_grad():
|
26 |
+
logits_on_tokens = cross_encoder(**received_tokens).logits
|
27 |
+
probabilities = logits_on_tokens.reshape(-1).tolist()
|
28 |
+
documents = sorted(zip(list_of_documents, probabilities), key=lambda x: x[1], reverse=True)
|
29 |
+
result = [document[0] for document in documents[:k]]
|
30 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
+
def retrieve(query, top_k_retriever=30, use_reranking=True, top_k_reranker=5):
|
34 |
query_vec = retriever.encode(query)
|
35 |
try:
|
36 |
documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(top_k_retriever).to_list()
|
37 |
documents = [doc[TEXT_COLUMN] for doc in documents]
|
38 |
|
39 |
if use_reranking:
|
40 |
+
documents = reranking(query, documents, top_k_reranker)
|
41 |
|
42 |
return documents
|
43 |
|