Spaces:
Sleeping
Sleeping
import os | |
import asyncio | |
import websockets | |
import sqlite3 | |
import datetime | |
import fireworks.client | |
import streamlit as st | |
import threading | |
import conteneiro | |
from langchain.agents import load_tools | |
from langchain.agents import initialize_agent | |
from langchain.agents import AgentType | |
from langchain.llms import HuggingFaceHub | |
from langchain.llms.fireworks import Fireworks | |
from langchain.chat_models.fireworks import ChatFireworks | |
client_ports = [] | |
# Define the websocket client class | |
class AgentsGPT: | |
def __init__(self): | |
self.status = st.sidebar.status(label="AgentsGPT", state="complete", expanded=False) | |
async def get_response(self, question): | |
GOOGLE_CSE_ID = os.environ["GOOGLE_CSE_ID"] | |
GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"] | |
FIREWORKS_API_KEY = os.environ["FIREWORKS_API_KEY"] | |
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"] | |
llm = Fireworks(model="accounts/fireworks/models/llama-v2-70b-chat", model_kwargs={"temperature":0, "max_tokens":1500, "top_p":1.0}, streaming=True) | |
tools = load_tools(["google-search", "llm-math"], llm=llm) | |
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, return_intermediate_steps=True) | |
response = agent({"input": question}) | |
output = response["output"] | |
steps = response["intermediate_steps"] | |
serverResponse = f"AgentsGPT: {output}" | |
responseSteps = f"intermediate steps: {steps}" | |
answer = f"Main output: {output}. Intermediate steps: {steps}" | |
print(serverResponse) | |
print(responseSteps) | |
output_Msg = st.chat_message("ai") | |
output_Msg.markdown(serverResponse) | |
output_steps = st.chat_message("assistant") | |
output_steps.markdown(responseSteps) | |
return answer | |
# Define a function that will run the client in a separate thread | |
def run(self): | |
# Create a thread object | |
self.thread = threading.Thread(target=self.run_client) | |
# Start the thread | |
self.thread.start() | |
# Define a function that will run the client using asyncio | |
def run_client(self): | |
# Get the asyncio event loop | |
loop = asyncio.new_event_loop() | |
# Set the event loop as the current one | |
asyncio.set_event_loop(loop) | |
# Run the client until it is stopped | |
loop.run_until_complete(self.client()) | |
# Stop the WebSocket client | |
async def stop_client(): | |
global ws | |
# Close the connection with the server | |
await ws.close() | |
client_ports.pop() | |
print("Stopping WebSocket client...") | |
# Define a coroutine that will connect to the server and exchange messages | |
async def startClient(self, clientPort): | |
self.uri = f'ws://localhost:{clientPort}' | |
self.name = f"Chaindesk client port: {clientPort}" | |
conteneiro.clients.append(self.name) | |
status = self.status | |
# Connect to the server | |
async with websockets.connect(self.uri) as websocket: | |
# Loop forever | |
while True: | |
status.update(label=self.name, state="running", expanded=True) | |
# Listen for messages from the server | |
input_message = await websocket.recv() | |
print(f"Server: {input_message}") | |
input_Msg = st.chat_message("assistant") | |
input_Msg.markdown(input_message) | |
try: | |
response = await self.get_response(input_message) | |
res1 = f"Client: {response}" | |
output_Msg = st.chat_message("ai") | |
output_Msg.markdown(res1) | |
await websocket.send(res1) | |
status.update(label=self.name, state="complete", expanded=True) | |
except websockets.ConnectionClosed: | |
print("client disconnected") | |
continue | |
except Exception as e: | |
print(f"Error: {e}") | |
continue |