import asyncio import websockets import threading import sqlite3 import fireworks.client import streamlit as st # Define the websocket client class class WebSocketClient: def __init__(self, clientPort): # Initialize the uri attribute self.clientPort = clientPort if "client_ports" not in st.session_state: st.session_state['client_ports'] = "" async def chatCompletion(self, question): system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: -agent and/or -client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic." try: # Connect to the database and get the last 30 messages db = sqlite3.connect('chat-hub.db') cursor = db.cursor() cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 10") messages = cursor.fetchall() messages.reverse() # Extract user inputs and generated responses from the messages past_user_inputs = [] generated_responses = [] for message in messages: if message[1] == 'server': past_user_inputs.append(message[2]) else: generated_responses.append(message[2]) # Prepare data to send to the chatgpt-api.shn.hk response = fireworks.client.ChatCompletion.create( model="accounts/fireworks/models/llama-v2-7b-chat", messages=[ {"role": "system", "content": system_instruction}, *[{"role": "user", "content": message} for message in past_user_inputs], *[{"role": "assistant", "content": message} for message in generated_responses], {"role": "user", "content": question} ], stream=False, n=1, max_tokens=2500, temperature=0.5, top_p=0.7, ) answer = response.choices[0].message.content print(answer) return str(answer) except Exception as error: print("Error while fetching or processing the response:", error) return "Error: Unable to generate a response." # Define a function that will run the client in a separate thread def run(self): # Create a thread object self.thread = threading.Thread(target=self.run_client) # Start the thread self.thread.start() # Define a function that will run the client using asyncio def run_client(self): # Get the asyncio event loop loop = asyncio.new_event_loop() # Set the event loop as the current one asyncio.set_event_loop(loop) # Run the client until it is stopped loop.run_until_complete(self.client()) # Define a coroutine that will connect to the server and exchange messages async def startClient(self, clientPort): uri = f'ws://localhost:{clientPort}' status = st.sidebar.status(label="runs", state="complete", expanded=False) # Connect to the server async with websockets.connect(uri) as websocket: # Loop forever while True: status.update(label="runs", state="running", expanded=True) # Listen for messages from the server input_message = await websocket.recv() print(f"Server: {input_message}") input_Msg = st.chat_message("assistant") input_Msg.markdown(input_message) try: response = await self.chatCompletion(input_message) res1 = f"Client: {response}" output_Msg = st.chat_message("ai") output_Msg.markdown(res1) await websocket.send(res1) status.update(label="runs", state="complete", expanded=True) except websockets.ConnectionClosed: print("client disconnected") continue except Exception as e: print(f"Error: {e}") continue