Spaces:
Runtime error
Runtime error
Ariel Hsieh
commited on
Commit
•
4b8f05e
1
Parent(s):
3247c6f
update app.py
Browse files
app.py
CHANGED
@@ -2,21 +2,19 @@ import streamlit as st #Web App
|
|
2 |
from transformers import pipeline
|
3 |
from pysentimiento import create_analyzer
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
model = st.selectbox("Which pretrained model would you like to use?",("DistilBERT","twitter-XLM-roBERTa-base","bertweet-sentiment-analysis"))
|
8 |
-
|
9 |
#title
|
10 |
st.title("Sentiment Analysis - Classify Sentiment of text")
|
11 |
|
|
|
|
|
12 |
data = []
|
13 |
text = st.text_input("Enter text here:","Artificial Intelligence is useful")
|
14 |
data.append(text)
|
15 |
if model == "DistilBERT":
|
16 |
#1
|
17 |
if st.button("Run Sentiment Analysis of Text"):
|
18 |
-
model_path = "
|
19 |
-
sentiment_pipeline = pipeline(
|
20 |
result = sentiment_pipeline(data)
|
21 |
label = result[0]["label"]
|
22 |
score = result[0]["score"]
|
@@ -27,7 +25,7 @@ elif model == "twitter-XLM-roBERTa-base":
|
|
27 |
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
28 |
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
|
29 |
result = sentiment_task(text)
|
30 |
-
label = result[0]["label"]
|
31 |
score = result[0]["score"]
|
32 |
st.write("The classification of the given text is " + label + " with a score of " + str(score))
|
33 |
|
@@ -46,7 +44,7 @@ elif model == "bertweet-sentiment-analysis":
|
|
46 |
neg = result.probas["NEG"]
|
47 |
pos = result.probas["POS"]
|
48 |
neu = result.probas["NEU"]
|
49 |
-
st.write("The classification of the given text is " + label + " with the
|
50 |
|
51 |
|
52 |
|
|
|
2 |
from transformers import pipeline
|
3 |
from pysentimiento import create_analyzer
|
4 |
|
|
|
|
|
|
|
|
|
5 |
#title
|
6 |
st.title("Sentiment Analysis - Classify Sentiment of text")
|
7 |
|
8 |
+
model = st.selectbox("Which pretrained model would you like to use?",("roberta-large-mnli","twitter-XLM-roBERTa-base","bertweet-sentiment-analysis"))
|
9 |
+
|
10 |
data = []
|
11 |
text = st.text_input("Enter text here:","Artificial Intelligence is useful")
|
12 |
data.append(text)
|
13 |
if model == "DistilBERT":
|
14 |
#1
|
15 |
if st.button("Run Sentiment Analysis of Text"):
|
16 |
+
model_path = "roberta-large-mnli"
|
17 |
+
sentiment_pipeline = pipeline(model=model_path)
|
18 |
result = sentiment_pipeline(data)
|
19 |
label = result[0]["label"]
|
20 |
score = result[0]["score"]
|
|
|
25 |
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
26 |
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
|
27 |
result = sentiment_task(text)
|
28 |
+
label = result[0]["label"].capitalize()
|
29 |
score = result[0]["score"]
|
30 |
st.write("The classification of the given text is " + label + " with a score of " + str(score))
|
31 |
|
|
|
44 |
neg = result.probas["NEG"]
|
45 |
pos = result.probas["POS"]
|
46 |
neu = result.probas["NEU"]
|
47 |
+
st.write("The classification of the given text is " + label + " with the scores broken down as: Positive - " + str(pos) + ", Neutral - " + str(neu) + ", Negative - " + str(neg))
|
48 |
|
49 |
|
50 |
|