Ariel Hsieh commited on
Commit
bd8d813
1 Parent(s): af1454e

update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -7
app.py CHANGED
@@ -1,18 +1,39 @@
1
  import streamlit as st #Web App
2
  from transformers import pipeline
 
 
 
 
 
3
 
4
  #title
5
  st.title("Sentiment Analysis - Classify Sentiment of text")
6
 
7
  data = []
8
  text = st.text_input("Enter text here:","Artificial Intelligence is useful")
9
- if st.button("Run Sentiment Analysis of Text"):
10
- data.append(text)
11
- sentiment_pipeline = pipeline("sentiment-analysis")
12
- result = sentiment_pipeline(data)
13
- label = result[0]["label"]
14
- score = result[0]["score"]
15
- st.write("The classification of the given text is " + label + " with a score of " + str(score))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
 
18
 
 
1
  import streamlit as st #Web App
2
  from transformers import pipeline
3
+ from pysentimiento import create_analyzer
4
+
5
+
6
+
7
+ model = st.selectbox("Which pretrained model would you like to use?",("DistilBERT","twitter-XLM-roBERTa-base","bertweet-sentiment-analysis"))
8
 
9
  #title
10
  st.title("Sentiment Analysis - Classify Sentiment of text")
11
 
12
  data = []
13
  text = st.text_input("Enter text here:","Artificial Intelligence is useful")
14
+ data.append(text)
15
+ if model == "DistilBERT":
16
+ #1
17
+ if st.button("Run Sentiment Analysis of Text"):
18
+ model_path = "distilbert-base-uncased-finetuned-sst-2-english"
19
+ sentiment_pipeline = pipeline("sentiment-analysis",model=model_path, tokenizer=model_path)
20
+ result = sentiment_pipeline(data)
21
+ label = result[0]["label"]
22
+ score = result[0]["score"]
23
+ st.write("The classification of the given text is " + label + " with a score of " + str(score))
24
+ elif model == "Twitter-roBERTa-base":
25
+ #2
26
+ model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
27
+ sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
28
+ result = sentiment_task(text)
29
+ st.write(result)
30
+
31
+ elif model == "bertweet-sentiment-analysis":
32
+ #3
33
+ analyzer = create_analyzer(task="sentiment", lang="en")
34
+ result = analyzer.predict(text)
35
+ st.write(result)
36
+
37
 
38
 
39