import streamlit as st #Web App from transformers import pipeline from pysentimiento import create_analyzer model = st.selectbox("Which pretrained model would you like to use?",("DistilBERT","twitter-XLM-roBERTa-base","bertweet-sentiment-analysis")) #title st.title("Sentiment Analysis - Classify Sentiment of text") data = [] text = st.text_input("Enter text here:","Artificial Intelligence is useful") data.append(text) if model == "DistilBERT": #1 if st.button("Run Sentiment Analysis of Text"): model_path = "distilbert-base-uncased-finetuned-sst-2-english" sentiment_pipeline = pipeline("sentiment-analysis",model=model_path, tokenizer=model_path) result = sentiment_pipeline(data) label = result[0]["label"] score = result[0]["score"] st.write("The classification of the given text is " + label + " with a score of " + str(score)) elif model == "Twitter-roBERTa-base": #2 model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment" sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) result = sentiment_task(text) st.write(result) elif model == "bertweet-sentiment-analysis": #3 analyzer = create_analyzer(task="sentiment", lang="en") result = analyzer.predict(text) st.write(result)