Ariel Hsieh commited on
Commit
6c5dac1
1 Parent(s): 09de9ab

update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -3
app.py CHANGED
@@ -21,20 +21,32 @@ if model == "DistilBERT":
21
  label = result[0]["label"]
22
  score = result[0]["score"]
23
  st.write("The classification of the given text is " + label + " with a score of " + str(score))
24
- elif model == "Twitter-roBERTa-base":
25
  #2
26
  if st.button("Run Sentiment Analysis of Text"):
27
  model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
28
  sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
29
  result = sentiment_task(text)
30
- st.write(result)
 
 
31
 
32
  elif model == "bertweet-sentiment-analysis":
33
  #3
34
  if st.button("Run Sentiment Analysis of Text"):
35
  analyzer = create_analyzer(task="sentiment", lang="en")
36
  result = analyzer.predict(text)
37
- st.write(result)
 
 
 
 
 
 
 
 
 
 
38
 
39
 
40
 
 
21
  label = result[0]["label"]
22
  score = result[0]["score"]
23
  st.write("The classification of the given text is " + label + " with a score of " + str(score))
24
+ elif model == "twitter-XLM-roBERTa-base":
25
  #2
26
  if st.button("Run Sentiment Analysis of Text"):
27
  model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
28
  sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
29
  result = sentiment_task(text)
30
+ label = result[0]["label"]
31
+ score = result[0]["score"]
32
+ st.write("The classification of the given text is " + label + " with a score of " + str(score))
33
 
34
  elif model == "bertweet-sentiment-analysis":
35
  #3
36
  if st.button("Run Sentiment Analysis of Text"):
37
  analyzer = create_analyzer(task="sentiment", lang="en")
38
  result = analyzer.predict(text)
39
+ if result.output == "POS":
40
+ label = "POSITIVE"
41
+ elif result.output == "NEU":
42
+ label = "NEUTRAL"
43
+ else:
44
+ label = "NEGATIVE"
45
+
46
+ neg = result.probas["NEG"]
47
+ pos = result.probas["POS"]
48
+ neu = result.probas["NEU"]
49
+ st.write("The classification of the given text is " + label + " with the percentages broken down as: Positive - " + str(pos) + ", Neutral - " + str(neu) + ", Negative - " + str(neg))
50
 
51
 
52