rvc-genshin-impact / app-full.py
ArkanDash's picture
feat(app): minor update
50600ce
raw
history blame
13.7 kB
import os
import glob
import json
import traceback
import logging
import gradio as gr
import numpy as np
import librosa
import torch
import asyncio
import edge_tts
import yt_dlp
import ffmpeg
import subprocess
import sys
import io
import wave
from datetime import datetime
from fairseq import checkpoint_utils
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from vc_infer_pipeline import VC
from config import Config
config = Config()
logging.getLogger("numba").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index):
def vc_fn(
input_audio,
upload_audio,
upload_mode,
f0_up_key,
f0_method,
index_rate,
tts_mode,
tts_text,
tts_voice
):
try:
if tts_mode:
if len(tts_text) > 100 and limitation:
return "Text is too long", None
if tts_text is None or tts_voice is None:
return "You need to enter text and select a voice", None
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
else:
if upload_mode:
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = upload_audio
duration = audio.shape[0] / sampling_rate
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
else:
audio, sr = librosa.load(input_audio, sr=16000, mono=True)
times = [0, 0, 0]
f0_up_key = int(f0_up_key)
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
if_f0,
f0_file=None,
)
print(
f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
)
return "Success", (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
return info, (None, None)
return vc_fn
def cut_vocal_and_inst(yt_url):
if yt_url != "":
if not os.path.exists("youtube_audio"):
os.mkdir("youtube_audio")
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
"outtmpl": 'youtube_audio/audio',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([yt_url])
yt_audio_path = "youtube_audio/audio.wav"
command = f"demucs --two-stems=vocals {yt_audio_path}"
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
print(result.stdout.decode())
return ("separated/htdemucs/audio/vocals.wav", "separated/htdemucs/audio/no_vocals.wav", yt_audio_path, "separated/htdemucs/audio/vocals.wav")
def combine_vocal_and_inst(audio_data, audio_volume):
print(audio_data)
if not os.path.exists("result"):
os.mkdir("result")
vocal_path = "result/output.wav"
inst_path = "separated/htdemucs/audio/no_vocals.wav"
output_path = "result/combine.mp3"
with wave.open(vocal_path, "w") as wave_file:
wave_file.setnchannels(1)
wave_file.setsampwidth(2)
wave_file.setframerate(audio_data[0])
wave_file.writeframes(audio_data[1].tobytes())
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
return output_path
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
def change_to_tts_mode(tts_mode, upload_mode):
if tts_mode:
return gr.Textbox.update(visible=False), gr.Audio.update(visible=False), gr.Checkbox.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
else:
if upload_mode:
return gr.Textbox.update(visible=False), gr.Audio.update(visible=True), gr.Checkbox.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
else:
return gr.Textbox.update(visible=True), gr.Audio.update(visible=False), gr.Checkbox.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
def change_to_upload_mode(upload_mode):
if upload_mode:
return gr.Textbox().update(visible=False), gr.Audio().update(visible=True)
else:
return gr.Textbox().update(visible=True), gr.Audio().update(visible=False)
if __name__ == '__main__':
load_hubert()
models = []
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
if config.json:
with open("weights/model_info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
for name, info in models_info.items():
if not info['enable']:
continue
title = info['title']
author = info.get("author", None)
cover = f"weights/{name}/{info['cover']}"
index = f"weights/{name}/{info['feature_retrieval_library']}"
cpt = torch.load(f"weights/{name}/{name}.pth", map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
models.append((name, title, author, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index)))
else:
folder_path = "weights"
for name in os.listdir(folder_path):
print("check folder: " + name)
if name.startswith("."): break
cover_path = glob.glob(f"{folder_path}/{name}/*.png") + glob.glob(f"{folder_path}/{name}/*.jpg")
index_path = glob.glob(f"{folder_path}/{name}/*.index")
checkpoint_path = glob.glob(f"{folder_path}/{name}/*.pth")
title = name
author = ""
if cover_path:
cover = cover_path[0]
else:
cover = ""
index = index_path[0]
cpt = torch.load(checkpoint_path[0], map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
models.append((name, title, author, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index)))
with gr.Blocks() as app:
gr.Markdown(
"# <center> RVC Models (Latest Update)\n"
"## <center> The input audio should be clean and pure voice without background music.\n"
"### <center> More feature will be added soon... \n"
"#### <center> Please regenerate your model to latest RVC to fully applied this new rvc.\n"
"[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/110kiMZTdP6Ri1lY9-NbQf17GVPPhHyeT?usp=sharing)\n\n"
"[![Original Repo](https://badgen.net/badge/icon/github?icon=github&label=Original%20Repo)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)"
)
with gr.Tabs():
for (name, title, author, cover, vc_fn) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<div>{title}</div>\n'+
(f'<div>Model author: {author}</div>' if author else "")+
(f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
'</div>'
)
with gr.Row():
with gr.Column():
vc_youtube = gr.Textbox(label="Youtube URL")
vc_convert = gr.Button("Convert", variant="primary")
vc_vocal_preview = gr.Audio(label="Vocal Preview")
vc_inst_preview = gr.Audio(label="Instrumental Preview")
vc_audio_preview = gr.Audio(label="Audio Preview")
with gr.Column():
vc_input = gr.Textbox(label="Input audio path")
vc_upload = gr.Audio(label="Upload audio file", visible=False, interactive=True)
upload_mode = gr.Checkbox(label="Upload mode", value=False)
vc_transpose = gr.Number(label="Transpose", value=0)
vc_f0method = gr.Radio(
label="Pitch extraction algorithm, PM is fast but Harvest is better for low frequencies",
choices=["pm", "harvest"],
value="pm",
interactive=True,
)
vc_index_ratio = gr.Slider(
minimum=0,
maximum=1,
label="Retrieval feature ratio",
value=0.6,
interactive=True,
)
tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit = gr.Button("Generate", variant="primary")
with gr.Column():
vc_volume = gr.Slider(
minimum=0,
maximum=10,
label="Vocal volume",
value=3,
interactive=True,
step=1
)
vc_outputCombine = gr.Audio(label="Output Combined Audio")
vc_combine = gr.Button("Combine",variant="primary")
vc_submit.click(vc_fn, [vc_input, vc_upload, upload_mode, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output1, vc_output2])
vc_convert.click(cut_vocal_and_inst, vc_youtube, [vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input])
vc_combine.click(combine_vocal_and_inst, [vc_output2, vc_volume], vc_outputCombine)
tts_mode.change(change_to_tts_mode, [tts_mode, upload_mode], [vc_input, vc_upload, upload_mode, tts_text, tts_voice])
upload_mode.change(change_to_upload_mode, [upload_mode], [vc_input, vc_upload])
gr.Markdown('# <center>Changelog 2023.05.15')
gr.Markdown('- Added support for direct upload to gradio')
gr.Markdown('- Added ayato-jp')
gr.Markdown('- Minor fix and adjustment')
app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)