Armandoliv commited on
Commit
93d7c3b
·
1 Parent(s): 125f3c8

Create new file

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import spacy
4
+ import os
5
+ import whisper
6
+ os.system('pip install https://huggingface.co/Armandoliv/es_pipeline/resolve/main/es_pipeline-any-py3-none-any.whl')
7
+ os.system('pip install git+https://github.com/openai/whisper.git')
8
+
9
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
10
+
11
+
12
+ nlp_ner = spacy.load("es_pipeline")
13
+
14
+ def main_generator(youtube_id:str):
15
+ YouTubeID = youtube_id # ¿Qué es la enfermedad de Crohn y cómo detectarla?
16
+ OutputFile = 'test_audio_youtube_.m4a'
17
+
18
+ os.system(f"youtube-dl -o {OutputFile} {YouTubeID} --extract-audio --restrict-filenames -f 'bestaudio[ext=m4a]'")
19
+ model_whisper = whisper.load_model("small")
20
+ result = model_whisper.transcribe(OutputFile)
21
+ text = result['text']
22
+ output_list = []
23
+ for ent in doc.ents:
24
+ result_dict = {
25
+ 'entity': ent.label_,
26
+ 'word': ent.text,
27
+ 'start':ent.start_char,
28
+ 'end': ent.end_char
29
+ }
30
+ output_list.append(result_dict)
31
+
32
+ return {"text": text, "entities": output_list}
33
+ inputs = [gr.Textbox(lines=1, placeholder="Link of youtube video here...", label="Input")]
34
+ outputs = gr.HighlightedText()
35
+ title="ASR FOR MEDICAL RECORDS"
36
+ description = "This demo uses AI Models to create an AUDIO ANNOTATION FOR MEDICAL RECORDS"
37
+ examples = ['xOZM-1p-jAk']
38
+
39
+ io = gr.Interface(fn=main_generator, inputs=inputs, outputs=outputs, title=title, description = description, examples = examples,
40
+
41
+ css= """.gr-button-primary { background: -webkit-linear-gradient(
42
+ 90deg, #355764 0%, #55a8a1 100% ) !important; background: #355764;
43
+ background: linear-gradient(
44
+ 90deg, #355764 0%, #55a8a1 100% ) !important;
45
+ background: -moz-linear-gradient( 90deg, #355764 0%, #55a8a1 100% ) !important;
46
+ background: -webkit-linear-gradient(
47
+ 90deg, #355764 0%, #55a8a1 100% ) !important;
48
+ color:white !important}"""
49
+ )
50
+
51
+ io.launch(debug=True)