Arnaudding001 commited on
Commit
5b1f1d2
1 Parent(s): bed6b95

Create encoder_align_all_parallel.py

Browse files
Files changed (1) hide show
  1. encoder_align_all_parallel.py +217 -0
encoder_align_all_parallel.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
3
+ author: lzhbrian (https://lzhbrian.me)
4
+ date: 2020.1.5
5
+ note: code is heavily borrowed from
6
+ https://github.com/NVlabs/ffhq-dataset
7
+ http://dlib.net/face_landmark_detection.py.html
8
+
9
+ requirements:
10
+ apt install cmake
11
+ conda install Pillow numpy scipy
12
+ pip install dlib
13
+ # download face landmark model from:
14
+ # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
15
+ """
16
+ from argparse import ArgumentParser
17
+ import time
18
+ import numpy as np
19
+ import PIL
20
+ import PIL.Image
21
+ import os
22
+ import scipy
23
+ import scipy.ndimage
24
+ import dlib
25
+ import multiprocessing as mp
26
+ import math
27
+
28
+ #from configs.paths_config import model_paths
29
+ SHAPE_PREDICTOR_PATH = 'shape_predictor_68_face_landmarks.dat'#model_paths["shape_predictor"]
30
+
31
+
32
+ def get_landmark(filepath, predictor):
33
+ """get landmark with dlib
34
+ :return: np.array shape=(68, 2)
35
+ """
36
+ detector = dlib.get_frontal_face_detector()
37
+ if type(filepath) == str:
38
+ img = dlib.load_rgb_image(filepath)
39
+ else:
40
+ img = filepath
41
+ dets = detector(img, 1)
42
+
43
+ if len(dets) == 0:
44
+ print('Error: no face detected!')
45
+ return None
46
+
47
+ shape = None
48
+ for k, d in enumerate(dets):
49
+ shape = predictor(img, d)
50
+
51
+ if shape is None:
52
+ print('Error: No face detected! If you are sure there are faces in your input, you may rerun the code several times until the face is detected. Sometimes the detector is unstable.')
53
+ t = list(shape.parts())
54
+ a = []
55
+ for tt in t:
56
+ a.append([tt.x, tt.y])
57
+ lm = np.array(a)
58
+ return lm
59
+
60
+
61
+ def align_face(filepath, predictor):
62
+ """
63
+ :param filepath: str
64
+ :return: PIL Image
65
+ """
66
+
67
+ lm = get_landmark(filepath, predictor)
68
+ if lm is None:
69
+ return None
70
+
71
+ lm_chin = lm[0: 17] # left-right
72
+ lm_eyebrow_left = lm[17: 22] # left-right
73
+ lm_eyebrow_right = lm[22: 27] # left-right
74
+ lm_nose = lm[27: 31] # top-down
75
+ lm_nostrils = lm[31: 36] # top-down
76
+ lm_eye_left = lm[36: 42] # left-clockwise
77
+ lm_eye_right = lm[42: 48] # left-clockwise
78
+ lm_mouth_outer = lm[48: 60] # left-clockwise
79
+ lm_mouth_inner = lm[60: 68] # left-clockwise
80
+
81
+ # Calculate auxiliary vectors.
82
+ eye_left = np.mean(lm_eye_left, axis=0)
83
+ eye_right = np.mean(lm_eye_right, axis=0)
84
+ eye_avg = (eye_left + eye_right) * 0.5
85
+ eye_to_eye = eye_right - eye_left
86
+ mouth_left = lm_mouth_outer[0]
87
+ mouth_right = lm_mouth_outer[6]
88
+ mouth_avg = (mouth_left + mouth_right) * 0.5
89
+ eye_to_mouth = mouth_avg - eye_avg
90
+
91
+ # Choose oriented crop rectangle.
92
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
93
+ x /= np.hypot(*x)
94
+ x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
95
+ y = np.flipud(x) * [-1, 1]
96
+ c = eye_avg + eye_to_mouth * 0.1
97
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
98
+ qsize = np.hypot(*x) * 2
99
+
100
+ # read image
101
+ if type(filepath) == str:
102
+ img = PIL.Image.open(filepath)
103
+ else:
104
+ img = PIL.Image.fromarray(filepath)
105
+
106
+ output_size = 256
107
+ transform_size = 256
108
+ enable_padding = True
109
+
110
+ # Shrink.
111
+ shrink = int(np.floor(qsize / output_size * 0.5))
112
+ if shrink > 1:
113
+ rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
114
+ img = img.resize(rsize, PIL.Image.ANTIALIAS)
115
+ quad /= shrink
116
+ qsize /= shrink
117
+
118
+ # Crop.
119
+ border = max(int(np.rint(qsize * 0.1)), 3)
120
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
121
+ int(np.ceil(max(quad[:, 1]))))
122
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
123
+ min(crop[3] + border, img.size[1]))
124
+ if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
125
+ img = img.crop(crop)
126
+ quad -= crop[0:2]
127
+
128
+ # Pad.
129
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
130
+ int(np.ceil(max(quad[:, 1]))))
131
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
132
+ max(pad[3] - img.size[1] + border, 0))
133
+ if enable_padding and max(pad) > border - 4:
134
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
135
+ img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
136
+ h, w, _ = img.shape
137
+ y, x, _ = np.ogrid[:h, :w, :1]
138
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
139
+ 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
140
+ blur = qsize * 0.02
141
+ img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
142
+ img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
143
+ img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
144
+ quad += pad[:2]
145
+
146
+ # Transform.
147
+ img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
148
+ if output_size < transform_size:
149
+ img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
150
+
151
+ # Save aligned image.
152
+ return img
153
+
154
+
155
+ def chunks(lst, n):
156
+ """Yield successive n-sized chunks from lst."""
157
+ for i in range(0, len(lst), n):
158
+ yield lst[i:i + n]
159
+
160
+
161
+ def extract_on_paths(file_paths):
162
+ predictor = dlib.shape_predictor(SHAPE_PREDICTOR_PATH)
163
+ pid = mp.current_process().name
164
+ print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths)))
165
+ tot_count = len(file_paths)
166
+ count = 0
167
+ for file_path, res_path in file_paths:
168
+ count += 1
169
+ if count % 100 == 0:
170
+ print('{} done with {}/{}'.format(pid, count, tot_count))
171
+ try:
172
+ res = align_face(file_path, predictor)
173
+ res = res.convert('RGB')
174
+ os.makedirs(os.path.dirname(res_path), exist_ok=True)
175
+ res.save(res_path)
176
+ except Exception:
177
+ continue
178
+ print('\tDone!')
179
+
180
+
181
+ def parse_args():
182
+ parser = ArgumentParser(add_help=False)
183
+ parser.add_argument('--num_threads', type=int, default=1)
184
+ parser.add_argument('--root_path', type=str, default='')
185
+ args = parser.parse_args()
186
+ return args
187
+
188
+
189
+ def run(args):
190
+ root_path = args.root_path
191
+ out_crops_path = root_path + '_crops'
192
+ if not os.path.exists(out_crops_path):
193
+ os.makedirs(out_crops_path, exist_ok=True)
194
+
195
+ file_paths = []
196
+ for root, dirs, files in os.walk(root_path):
197
+ for file in files:
198
+ file_path = os.path.join(root, file)
199
+ fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path))
200
+ res_path = '{}.jpg'.format(os.path.splitext(fname)[0])
201
+ if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path):
202
+ continue
203
+ file_paths.append((file_path, res_path))
204
+
205
+ file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads))))
206
+ print(len(file_chunks))
207
+ pool = mp.Pool(args.num_threads)
208
+ print('Running on {} paths\nHere we goooo'.format(len(file_paths)))
209
+ tic = time.time()
210
+ pool.map(extract_on_paths, file_chunks)
211
+ toc = time.time()
212
+ print('Mischief managed in {}s'.format(toc - tic))
213
+
214
+
215
+ if __name__ == '__main__':
216
+ args = parse_args()
217
+ run(args)