import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from raft_core_update import BasicUpdateBlock, SmallUpdateBlock from raft_core_extractor import BasicEncoder, SmallEncoder from raft_core_corr import CorrBlock, AlternateCorrBlock from raft_core_utils_utils import bilinear_sampler, coords_grid, upflow8 try: autocast = torch.cuda.amp.autocast except: # dummy autocast for PyTorch < 1.6 class autocast: def __init__(self, enabled): pass def __enter__(self): pass def __exit__(self, *args): pass class RAFT(nn.Module): def __init__(self, args): super(RAFT, self).__init__() self.args = args if args.small: self.hidden_dim = hdim = 96 self.context_dim = cdim = 64 args.corr_levels = 4 args.corr_radius = 3 else: self.hidden_dim = hdim = 128 self.context_dim = cdim = 128 args.corr_levels = 4 args.corr_radius = 4 if 'dropout' not in self.args: self.args.dropout = 0 if 'alternate_corr' not in self.args: self.args.alternate_corr = False # feature network, context network, and update block if args.small: self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout) self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout) self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim) else: self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout) self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout) self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim) def freeze_bn(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() def initialize_flow(self, img): """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0""" N, C, H, W = img.shape coords0 = coords_grid(N, H//8, W//8, device=img.device) coords1 = coords_grid(N, H//8, W//8, device=img.device) # optical flow computed as difference: flow = coords1 - coords0 return coords0, coords1 def upsample_flow(self, flow, mask): """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """ N, _, H, W = flow.shape mask = mask.view(N, 1, 9, 8, 8, H, W) mask = torch.softmax(mask, dim=2) up_flow = F.unfold(8 * flow, [3,3], padding=1) up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) up_flow = torch.sum(mask * up_flow, dim=2) up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) return up_flow.reshape(N, 2, 8*H, 8*W) def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False): """ Estimate optical flow between pair of frames """ image1 = 2 * (image1 / 255.0) - 1.0 image2 = 2 * (image2 / 255.0) - 1.0 image1 = image1.contiguous() image2 = image2.contiguous() hdim = self.hidden_dim cdim = self.context_dim # run the feature network with autocast(enabled=self.args.mixed_precision): fmap1, fmap2 = self.fnet([image1, image2]) fmap1 = fmap1.float() fmap2 = fmap2.float() if self.args.alternate_corr: corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius) else: corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius) # run the context network with autocast(enabled=self.args.mixed_precision): cnet = self.cnet(image1) net, inp = torch.split(cnet, [hdim, cdim], dim=1) net = torch.tanh(net) inp = torch.relu(inp) coords0, coords1 = self.initialize_flow(image1) if flow_init is not None: coords1 = coords1 + flow_init flow_predictions = [] for itr in range(iters): coords1 = coords1.detach() corr = corr_fn(coords1) # index correlation volume flow = coords1 - coords0 with autocast(enabled=self.args.mixed_precision): net, up_mask, delta_flow = self.update_block(net, inp, corr, flow) # F(t+1) = F(t) + \Delta(t) coords1 = coords1 + delta_flow # upsample predictions if up_mask is None: flow_up = upflow8(coords1 - coords0) else: flow_up = self.upsample_flow(coords1 - coords0, up_mask) flow_predictions.append(flow_up) if test_mode: return coords1 - coords0, flow_up return flow_predictions