ArneBinder's picture
Upload 7 files
04ce9af verified
raw
history blame
12.2 kB
import logging
from collections import defaultdict
from typing import Dict, List, Optional, Tuple
import gradio as gr
import pandas as pd
from pie_modules.document.processing import tokenize_document
from pie_modules.documents import TokenDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
from pytorch_ie import Pipeline
from pytorch_ie.annotations import LabeledSpan, Span
from pytorch_ie.documents import TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
from rendering_utils import labeled_span_to_id
from transformers import PreTrainedModel, PreTrainedTokenizer
from vector_store import SimpleVectorStore, VectorStore
logger = logging.getLogger(__name__)
def _embed_text_annotations(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
text_layer_name: str,
) -> Dict[Span, List[float]]:
# to not modify the original document
document = document.copy()
# tokenize_document does not yet consider predictions, so we need to add them manually
document[text_layer_name].extend(document[text_layer_name].predictions.clear())
added_annotations = []
tokenizer_kwargs = {
"max_length": 512,
"stride": 64,
"truncation": True,
"return_overflowing_tokens": True,
}
tokenized_documents = tokenize_document(
document,
tokenizer=tokenizer,
result_document_type=TokenDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
partition_layer="labeled_partitions",
added_annotations=added_annotations,
strict_span_conversion=False,
**tokenizer_kwargs,
)
# just tokenize again to get tensors in the correct format for the model
model_inputs = tokenizer(document.text, return_tensors="pt", **tokenizer_kwargs)
# this is added when using return_overflowing_tokens=True, but the model does not accept it
model_inputs.pop("overflow_to_sample_mapping", None)
assert len(model_inputs.encodings) == len(tokenized_documents)
model_output = model(**model_inputs)
# get embeddings for all text annotations
embeddings = {}
for batch_idx in range(len(model_output.last_hidden_state)):
text2tok_ann = added_annotations[batch_idx][text_layer_name]
tok2text_ann = {v: k for k, v in text2tok_ann.items()}
for tok_ann in tokenized_documents[batch_idx].labeled_spans:
# skip "empty" annotations
if tok_ann.start == tok_ann.end:
continue
# use the max pooling strategy to get a single embedding for the annotation text
embedding = model_output.last_hidden_state[batch_idx, tok_ann.start : tok_ann.end].max(
dim=0
)[0]
text_ann = tok2text_ann[tok_ann]
if text_ann in embeddings:
logger.warning(
f"Overwriting embedding for annotation '{text_ann}' (do you use striding?)"
)
embeddings[text_ann] = embedding
return embeddings
def _annotate(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
pipeline: Pipeline,
embedding_model: Optional[PreTrainedModel] = None,
embedding_tokenizer: Optional[PreTrainedTokenizer] = None,
) -> None:
# execute prediction pipeline
pipeline(document)
if embedding_model is not None and embedding_tokenizer is not None:
adu_embeddings = _embed_text_annotations(
document=document,
model=embedding_model,
tokenizer=embedding_tokenizer,
text_layer_name="labeled_spans",
)
# convert keys to str because JSON keys must be strings
adu_embeddings_dict = {
labeled_span_to_id(k): v.detach().tolist() for k, v in adu_embeddings.items()
}
document.metadata["embeddings"] = adu_embeddings_dict
else:
gr.Warning(
"No embedding model provided. Skipping embedding extraction. You can load an embedding "
"model in the 'Model Configuration' section."
)
def create_and_annotate_document(
text: str,
doc_id: str,
models: Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]],
) -> TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions:
"""Create a TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions from the provided
text, annotate it, and add it to the index.
Parameters:
text: The text to process.
doc_id: The ID of the document.
models: A tuple containing the prediction pipeline and the embedding model and tokenizer.
Returns:
The processed document.
"""
try:
document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions(
id=doc_id, text=text, metadata={}
)
# add single partition from the whole text (the model only considers text in partitions)
document.labeled_partitions.append(LabeledSpan(start=0, end=len(text), label="text"))
# annotate the document
_annotate(
document=document,
pipeline=models[0],
embedding_model=models[1],
embedding_tokenizer=models[2],
)
return document
except Exception as e:
raise gr.Error(f"Failed to process text: {e}")
def get_annotation_from_document(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
annotation_id: str,
annotation_layer: str,
) -> LabeledSpan:
# use predictions
annotations = document[annotation_layer].predictions
id2annotation = {labeled_span_to_id(annotation): annotation for annotation in annotations}
annotation = id2annotation.get(annotation_id)
if annotation is None:
raise gr.Error(
f"annotation '{annotation_id}' not found in document '{document.id}'. Available "
f"annotations: {id2annotation}"
)
return annotation
class DocumentStore:
DOCUMENT_TYPE = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
def __init__(self, vector_store: Optional[VectorStore[Tuple[str, str]]] = None):
self.documents = {}
self.vector_store = vector_store or SimpleVectorStore()
def get_annotation(
self,
doc_id: str,
annotation_id: str,
annotation_layer: str,
) -> LabeledSpan:
document = self.documents.get(doc_id)
if document is None:
raise gr.Error(
f"Document '{doc_id}' not found in index. Available documents: {list(self.documents)}"
)
return get_annotation_from_document(document, annotation_id, annotation_layer)
def get_similar_adus_df(
self,
ref_annotation_id: str,
ref_document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
min_similarity: float,
top_k: int,
) -> pd.DataFrame:
similar_entries = self.vector_store.retrieve_similar(
ref_id=(ref_document.id, ref_annotation_id),
min_similarity=min_similarity,
top_k=top_k,
)
similar_annotations = [
self.get_annotation(
doc_id=doc_id,
annotation_id=annotation_id,
annotation_layer="labeled_spans",
)
for (doc_id, annotation_id), _ in similar_entries
]
df = pd.DataFrame(
[
# unpack the tuple (doc_id, annotation_id) to separate columns
# and add the similarity score and the text of the annotation
(doc_id, annotation_id, score, str(annotation))
for ((doc_id, annotation_id), score), annotation in zip(
similar_entries, similar_annotations
)
],
columns=["doc_id", "adu_id", "sim_score", "text"],
)
return df
def get_relevant_adus_df(
self,
ref_annotation_id: str,
ref_document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
min_similarity: float,
top_k: int,
relation_types: List[str],
columns: List[str],
) -> pd.DataFrame:
similar_entries = self.vector_store.retrieve_similar(
ref_id=(ref_document.id, ref_annotation_id),
min_similarity=min_similarity,
top_k=top_k,
)
result = []
for (doc_id, annotation_id), score in similar_entries:
# skip entries from the same document
if doc_id == ref_document.id:
continue
document = self.documents[doc_id]
tail2rels = defaultdict(list)
head2rels = defaultdict(list)
for rel in document.binary_relations.predictions:
# skip non-argumentative relations
if rel.label not in relation_types:
continue
head2rels[rel.head].append(rel)
tail2rels[rel.tail].append(rel)
id2annotation = {
labeled_span_to_id(annotation): annotation
for annotation in document.labeled_spans.predictions
}
annotation = id2annotation.get(annotation_id)
# note: we do not need to check if the annotation is different from the reference annotation,
# because they come from different documents and we already skip entries from the same document
for rel in head2rels.get(annotation, []):
result.append(
{
"doc_id": doc_id,
"reference_adu": str(annotation),
"sim_score": score,
"rel_score": rel.score,
"relation": rel.label,
"adu": str(rel.tail),
}
)
# define column order
df = pd.DataFrame(result, columns=columns)
return df
def add_document(
self, document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
) -> None:
try:
if document.id in self.documents:
gr.Warning(f"Document '{document.id}' already in index. Overwriting.")
# save the processed document to the index
self.documents[document.id] = document
# save the embeddings to the vector store
for adu_id, embedding in document.metadata["embeddings"].items():
self.vector_store.save((document.id, adu_id), embedding)
gr.Info(
f"Added document {document.id} to index (index contains {len(self.documents)} "
f"documents and {len(self.vector_store)} embeddings)."
)
except Exception as e:
raise gr.Error(f"Failed to add document {document.id} to index: {e}")
def add_document_from_dict(self, document_dict: dict) -> None:
document = self.DOCUMENT_TYPE.fromdict(document_dict)
# metadata is not automatically deserialized, so we need to set it manually
document.metadata = document_dict["metadata"]
self.add_document(document)
def add_documents(
self, documents: List[TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions]
) -> None:
for document in documents:
self.add_document(document)
def get_document(
self, doc_id: str
) -> TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions:
return self.documents[doc_id]
def overview(self) -> pd.DataFrame:
df = pd.DataFrame(
[
(
doc_id,
len(document.labeled_spans.predictions),
len(document.binary_relations.predictions),
)
for doc_id, document in self.documents.items()
],
columns=["doc_id", "num_adus", "num_relations"],
)
return df
def as_dict(self) -> dict:
return {doc_id: document.asdict() for doc_id, document in self.documents.items()}