Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +381 -0
- requirements.txt +16 -0
app.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from uuid import uuid4
|
7 |
+
from huggingface_hub.file_download import http_get
|
8 |
+
from langchain_community.document_loaders import (
|
9 |
+
CSVLoader,
|
10 |
+
EverNoteLoader,
|
11 |
+
PDFMinerLoader,
|
12 |
+
TextLoader,
|
13 |
+
UnstructuredEmailLoader,
|
14 |
+
UnstructuredEPubLoader,
|
15 |
+
UnstructuredHTMLLoader,
|
16 |
+
UnstructuredMarkdownLoader,
|
17 |
+
UnstructuredODTLoader,
|
18 |
+
UnstructuredPowerPointLoader,
|
19 |
+
UnstructuredWordDocumentLoader,
|
20 |
+
)
|
21 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
22 |
+
from langchain.docstore.document import Document
|
23 |
+
from sentence_transformers import SentenceTransformer
|
24 |
+
from sentence_transformers.util import cos_sim
|
25 |
+
from llama_cpp import Llama
|
26 |
+
|
27 |
+
|
28 |
+
SYSTEM_PROMPT = "Ты — русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
|
29 |
+
|
30 |
+
LOADER_MAPPING = {
|
31 |
+
".csv": (CSVLoader, {}),
|
32 |
+
".doc": (UnstructuredWordDocumentLoader, {}),
|
33 |
+
".docx": (UnstructuredWordDocumentLoader, {}),
|
34 |
+
".enex": (EverNoteLoader, {}),
|
35 |
+
".epub": (UnstructuredEPubLoader, {}),
|
36 |
+
".html": (UnstructuredHTMLLoader, {}),
|
37 |
+
".md": (UnstructuredMarkdownLoader, {}),
|
38 |
+
".odt": (UnstructuredODTLoader, {}),
|
39 |
+
".pdf": (PDFMinerLoader, {}),
|
40 |
+
".ppt": (UnstructuredPowerPointLoader, {}),
|
41 |
+
".pptx": (UnstructuredPowerPointLoader, {}),
|
42 |
+
".txt": (TextLoader, {"encoding": "utf8"}),
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
def load_model(
|
47 |
+
directory: str = ".",
|
48 |
+
model_name: str = "Mistral-Nemo-Instruct-2407-Q4_K_M.gguf",
|
49 |
+
model_url: str = "https://huggingface.co/second-state/Mistral-Nemo-Instruct-2407-GGUF/resolve/main/Mistral-Nemo-Instruct-2407-Q4_K_M.gguf"
|
50 |
+
):
|
51 |
+
final_model_path = os.path.join(directory, model_name)
|
52 |
+
|
53 |
+
print("Downloading all files...")
|
54 |
+
if not os.path.exists(final_model_path):
|
55 |
+
with open(final_model_path, "wb") as f:
|
56 |
+
http_get(model_url, f)
|
57 |
+
os.chmod(final_model_path, 0o777)
|
58 |
+
print("Files downloaded!")
|
59 |
+
|
60 |
+
model = Llama(
|
61 |
+
model_path=final_model_path,
|
62 |
+
n_ctx=2000,
|
63 |
+
n_parts=1,
|
64 |
+
)
|
65 |
+
|
66 |
+
print("Model loaded!")
|
67 |
+
return model
|
68 |
+
|
69 |
+
|
70 |
+
EMBEDDER = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
71 |
+
#Alibaba-NLP/gte-multilingual-base
|
72 |
+
#Лидерборд по эмбеддингам
|
73 |
+
#intfloat/e5-mistral-7b-instruct-лучшая для русского языка
|
74 |
+
#deepvk/USER-bge-m3 - немного отстает по качеству, но в 10 раз меньше и быстрее
|
75 |
+
#BAAI/bge-multilingual-gemma2
|
76 |
+
#EMBEDDER = SentenceTransformer("intfloat/multilingual-e5-large-instruct")
|
77 |
+
#EMBEDDER = SentenceTransformer("deepvk/USER-bge-m3")
|
78 |
+
MODEL = load_model()
|
79 |
+
|
80 |
+
|
81 |
+
def get_uuid():
|
82 |
+
return str(uuid4())
|
83 |
+
|
84 |
+
|
85 |
+
def load_single_document(file_path: str) -> Document:
|
86 |
+
ext = "." + file_path.rsplit(".", 1)[-1]
|
87 |
+
assert ext in LOADER_MAPPING
|
88 |
+
loader_class, loader_args = LOADER_MAPPING[ext]
|
89 |
+
loader = loader_class(file_path, **loader_args)
|
90 |
+
return loader.load()[0]
|
91 |
+
|
92 |
+
|
93 |
+
def get_message_tokens(model, role, content):
|
94 |
+
content = f"{role}\n{content}\n</s>"
|
95 |
+
content = content.encode("utf-8")
|
96 |
+
return model.tokenize(content, special=True)
|
97 |
+
|
98 |
+
|
99 |
+
def get_system_tokens(model):
|
100 |
+
system_message = {"role": "system", "content": SYSTEM_PROMPT}
|
101 |
+
return get_message_tokens(model, **system_message)
|
102 |
+
|
103 |
+
|
104 |
+
def process_text(text):
|
105 |
+
lines = text.split("\n")
|
106 |
+
lines = [line for line in lines if len(line.strip()) > 2]
|
107 |
+
text = "\n".join(lines).strip()
|
108 |
+
if len(text) < 10:
|
109 |
+
return None
|
110 |
+
return text
|
111 |
+
|
112 |
+
|
113 |
+
def upload_files(files, file_paths):
|
114 |
+
file_paths = [f.name for f in files]
|
115 |
+
return file_paths
|
116 |
+
|
117 |
+
|
118 |
+
def build_index(file_paths, db, chunk_size, chunk_overlap, file_warning):
|
119 |
+
documents = [load_single_document(path) for path in file_paths]
|
120 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
121 |
+
documents = text_splitter.split_documents(documents)
|
122 |
+
print("Documents after split:", len(documents))
|
123 |
+
fixed_documents = []
|
124 |
+
for doc in documents:
|
125 |
+
doc.page_content = process_text(doc.page_content)
|
126 |
+
if not doc.page_content:
|
127 |
+
continue
|
128 |
+
fixed_documents.append(doc)
|
129 |
+
print("Documents after processing:", len(fixed_documents))
|
130 |
+
|
131 |
+
texts = [doc.page_content for doc in fixed_documents]
|
132 |
+
embeddings = EMBEDDER.encode(texts, convert_to_tensor=True)
|
133 |
+
db = {"docs": texts, "embeddings": embeddings}
|
134 |
+
print("Embeddings calculated!")
|
135 |
+
|
136 |
+
file_warning = f"Загружено {len(fixed_documents)} фрагментов! Можно задавать вопросы."
|
137 |
+
return db, file_warning
|
138 |
+
|
139 |
+
|
140 |
+
def retrieve(history, db, retrieved_docs, k_documents):
|
141 |
+
retrieved_docs = ""
|
142 |
+
if db:
|
143 |
+
last_user_message = history[-1][0]
|
144 |
+
query_embedding = EMBEDDER.encode(last_user_message, convert_to_tensor=True)
|
145 |
+
scores = cos_sim(query_embedding, db["embeddings"])[0]
|
146 |
+
top_k_idx = torch.topk(scores, k=k_documents)[1]
|
147 |
+
top_k_documents = [db["docs"][idx] for idx in top_k_idx]
|
148 |
+
retrieved_docs = "\n\n".join(top_k_documents)
|
149 |
+
return retrieved_docs
|
150 |
+
|
151 |
+
|
152 |
+
def user(message, history, system_prompt):
|
153 |
+
new_history = history + [[message, None]]
|
154 |
+
return "", new_history
|
155 |
+
|
156 |
+
|
157 |
+
def bot(
|
158 |
+
history,
|
159 |
+
system_prompt,
|
160 |
+
conversation_id,
|
161 |
+
retrieved_docs,
|
162 |
+
top_p,
|
163 |
+
top_k,
|
164 |
+
temp
|
165 |
+
):
|
166 |
+
model = MODEL
|
167 |
+
if not history:
|
168 |
+
return
|
169 |
+
|
170 |
+
tokens = get_system_tokens(model)[:]
|
171 |
+
|
172 |
+
for user_message, bot_message in history[:-1]:
|
173 |
+
message_tokens = get_message_tokens(model=model, role="user", content=user_message)
|
174 |
+
tokens.extend(message_tokens)
|
175 |
+
if bot_message:
|
176 |
+
message_tokens = get_message_tokens(model=model, role="bot", content=bot_message)
|
177 |
+
tokens.extend(message_tokens)
|
178 |
+
|
179 |
+
last_user_message = history[-1][0]
|
180 |
+
if retrieved_docs:
|
181 |
+
last_user_message = f"Контекст: {retrieved_docs}\n\nИспользуя контекст, ответь на вопрос: {last_user_message}"
|
182 |
+
message_tokens = get_message_tokens(model=model, role="user", content=last_user_message)
|
183 |
+
tokens.extend(message_tokens)
|
184 |
+
|
185 |
+
role_tokens = model.tokenize("bot\n".encode("utf-8"), special=True)
|
186 |
+
tokens.extend(role_tokens)
|
187 |
+
generator = model.generate(
|
188 |
+
tokens,
|
189 |
+
top_k=top_k,
|
190 |
+
top_p=top_p,
|
191 |
+
temp=temp
|
192 |
+
)
|
193 |
+
|
194 |
+
partial_text = ""
|
195 |
+
for i, token in enumerate(generator):
|
196 |
+
if token == model.token_eos():
|
197 |
+
break
|
198 |
+
partial_text += model.detokenize([token]).decode("utf-8", "ignore")
|
199 |
+
history[-1][1] = partial_text
|
200 |
+
yield history
|
201 |
+
|
202 |
+
|
203 |
+
with gr.Blocks(
|
204 |
+
theme=gr.themes.Soft()
|
205 |
+
) as demo:
|
206 |
+
db = gr.State(None)
|
207 |
+
conversation_id = gr.State(get_uuid)
|
208 |
+
#favicon = '<img src="https://cdn.midjourney.com/b88e5beb-6324-4820-8504-a1a37a9ba36d/0_1.png" width="48px" style="display: inline">'
|
209 |
+
gr.Markdown(
|
210 |
+
#f"""<h1><center>{favicon}Saiga 13B llama.cpp: retrieval QA</center></h1>
|
211 |
+
f"""<h1><center>Вопросно-ответная система по Вашим документам. Работает на CPU.\n
|
212 |
+
На демо-стенде реализован простейший алгоритм поиска информации, при внедрении в IT-контуре компании, качество поиска выше в разы.\n
|
213 |
+
Для внедрения быстрой версии (на GPU ответ быстрее в 20-100 раз) в Информационном контуре Вашей организации, пишите на e-mail: info@digital-human.ru</center></h1>
|
214 |
+
"""
|
215 |
+
)
|
216 |
+
|
217 |
+
with gr.Row():
|
218 |
+
with gr.Column(scale=5):
|
219 |
+
file_output = gr.File(file_count="multiple", label="Загрузка файлов")
|
220 |
+
file_paths = gr.State([])
|
221 |
+
file_warning = gr.Markdown(f"Фрагменты ещё не загружены!")
|
222 |
+
|
223 |
+
with gr.Column(min_width=200, scale=3):
|
224 |
+
with gr.Tab(label="Параметры нарезки"):
|
225 |
+
chunk_size = gr.Slider(
|
226 |
+
minimum=50,
|
227 |
+
maximum=2000,
|
228 |
+
value=250,
|
229 |
+
step=50,
|
230 |
+
interactive=True,
|
231 |
+
label="Размер фрагментов",
|
232 |
+
)
|
233 |
+
chunk_overlap = gr.Slider(
|
234 |
+
minimum=0,
|
235 |
+
maximum=500,
|
236 |
+
value=30,
|
237 |
+
step=10,
|
238 |
+
interactive=True,
|
239 |
+
label="Пересечение"
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
with gr.Row():
|
244 |
+
k_documents = gr.Slider(
|
245 |
+
minimum=1,
|
246 |
+
maximum=10,
|
247 |
+
value=2,
|
248 |
+
step=1,
|
249 |
+
interactive=True,
|
250 |
+
label="Кол-во фрагментов для контекста"
|
251 |
+
)
|
252 |
+
with gr.Row():
|
253 |
+
retrieved_docs = gr.Textbox(
|
254 |
+
lines=6,
|
255 |
+
label="Извлеченные фрагменты",
|
256 |
+
placeholder="Появятся после задавания вопросов",
|
257 |
+
interactive=False
|
258 |
+
)
|
259 |
+
with gr.Row():
|
260 |
+
with gr.Column(scale=5):
|
261 |
+
system_prompt = gr.Textbox(label="Системный промпт", placeholder="", value=SYSTEM_PROMPT, interactive=False)
|
262 |
+
chatbot = gr.Chatbot(label="Диалог").style(height=400)
|
263 |
+
with gr.Column(min_width=80, scale=1):
|
264 |
+
with gr.Tab(label="Параметры генерации"):
|
265 |
+
top_p = gr.Slider(
|
266 |
+
minimum=0.0,
|
267 |
+
maximum=1.0,
|
268 |
+
value=0.9,
|
269 |
+
step=0.05,
|
270 |
+
interactive=True,
|
271 |
+
label="Top-p",
|
272 |
+
)
|
273 |
+
top_k = gr.Slider(
|
274 |
+
minimum=10,
|
275 |
+
maximum=100,
|
276 |
+
value=30,
|
277 |
+
step=5,
|
278 |
+
interactive=True,
|
279 |
+
label="Top-k",
|
280 |
+
)
|
281 |
+
temp = gr.Slider(
|
282 |
+
minimum=0.0,
|
283 |
+
maximum=2.0,
|
284 |
+
value=0.1,
|
285 |
+
step=0.1,
|
286 |
+
interactive=True,
|
287 |
+
label="Temp"
|
288 |
+
)
|
289 |
+
|
290 |
+
with gr.Row():
|
291 |
+
with gr.Column():
|
292 |
+
msg = gr.Textbox(
|
293 |
+
label="Отправить сообщение",
|
294 |
+
placeholder="Отправить сообщение",
|
295 |
+
show_label=False,
|
296 |
+
).style(container=False)
|
297 |
+
with gr.Column():
|
298 |
+
with gr.Row():
|
299 |
+
submit = gr.Button("Отправить")
|
300 |
+
stop = gr.Button("Остановить")
|
301 |
+
clear = gr.Button("Очистить")
|
302 |
+
|
303 |
+
# Upload files
|
304 |
+
upload_event = file_output.change(
|
305 |
+
fn=upload_files,
|
306 |
+
inputs=[file_output, file_paths],
|
307 |
+
outputs=[file_paths],
|
308 |
+
queue=True,
|
309 |
+
).success(
|
310 |
+
fn=build_index,
|
311 |
+
inputs=[file_paths, db, chunk_size, chunk_overlap, file_warning],
|
312 |
+
outputs=[db, file_warning],
|
313 |
+
queue=True
|
314 |
+
)
|
315 |
+
|
316 |
+
# Pressing Enter
|
317 |
+
submit_event = msg.submit(
|
318 |
+
fn=user,
|
319 |
+
inputs=[msg, chatbot, system_prompt],
|
320 |
+
outputs=[msg, chatbot],
|
321 |
+
queue=False,
|
322 |
+
).success(
|
323 |
+
fn=retrieve,
|
324 |
+
inputs=[chatbot, db, retrieved_docs, k_documents],
|
325 |
+
outputs=[retrieved_docs],
|
326 |
+
queue=True,
|
327 |
+
).success(
|
328 |
+
fn=bot,
|
329 |
+
inputs=[
|
330 |
+
chatbot,
|
331 |
+
system_prompt,
|
332 |
+
conversation_id,
|
333 |
+
retrieved_docs,
|
334 |
+
top_p,
|
335 |
+
top_k,
|
336 |
+
temp
|
337 |
+
],
|
338 |
+
outputs=chatbot,
|
339 |
+
queue=True,
|
340 |
+
)
|
341 |
+
|
342 |
+
# Pressing the button
|
343 |
+
submit_click_event = submit.click(
|
344 |
+
fn=user,
|
345 |
+
inputs=[msg, chatbot, system_prompt],
|
346 |
+
outputs=[msg, chatbot],
|
347 |
+
queue=False,
|
348 |
+
).success(
|
349 |
+
fn=retrieve,
|
350 |
+
inputs=[chatbot, db, retrieved_docs, k_documents],
|
351 |
+
outputs=[retrieved_docs],
|
352 |
+
queue=True,
|
353 |
+
).success(
|
354 |
+
fn=bot,
|
355 |
+
inputs=[
|
356 |
+
chatbot,
|
357 |
+
system_prompt,
|
358 |
+
conversation_id,
|
359 |
+
retrieved_docs,
|
360 |
+
top_p,
|
361 |
+
top_k,
|
362 |
+
temp
|
363 |
+
],
|
364 |
+
outputs=chatbot,
|
365 |
+
queue=True,
|
366 |
+
)
|
367 |
+
|
368 |
+
# Stop generation
|
369 |
+
stop.click(
|
370 |
+
fn=None,
|
371 |
+
inputs=None,
|
372 |
+
outputs=None,
|
373 |
+
cancels=[submit_event, submit_click_event],
|
374 |
+
queue=False,
|
375 |
+
)
|
376 |
+
|
377 |
+
# Clear history
|
378 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
379 |
+
|
380 |
+
demo.queue(max_size=128, concurrency_count=1)
|
381 |
+
demo.launch(show_error=True)
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama-cpp-python
|
2 |
+
langchain==0.2.4
|
3 |
+
langchain-community==0.2.4
|
4 |
+
chromadb==0.5.0
|
5 |
+
huggingface-hub==0.19.4
|
6 |
+
gradio==4.36.1
|
7 |
+
tenacity==8.3.0
|
8 |
+
torch==2.1.0
|
9 |
+
sentence-transformers
|
10 |
+
#langchain==0.0.174
|
11 |
+
#huggingface-hub==0.19.4
|
12 |
+
pdfminer.six==20221105
|
13 |
+
unstructured==0.6.10
|
14 |
+
#gradio
|
15 |
+
tabulate
|
16 |
+
azure-core
|