File size: 2,222 Bytes
4a6dd76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a809de2
4a6dd76
 
 
 
 
a809de2
4a6dd76
 
3f89e2e
4a6dd76
 
3d7a976
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import re
import gradio as gr

import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel

processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

def process_document(image, question):
    # prepare encoder inputs
    pixel_values = processor(image, return_tensors="pt").pixel_values
    
    # prepare decoder inputs
    task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
    prompt = task_prompt.replace("{user_input}", question)
    decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
          
    # generate answer
    outputs = model.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=model.decoder.config.max_position_embeddings,
        early_stopping=True,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )
    
    # postprocess
    sequence = processor.batch_decode(outputs.sequences)[0]
    sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
    sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token
    
    return processor.token2json(sequence)

description = "Neurons Lab Gradio Demo for document visual question answering. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."

demo = gr.Interface(
    fn=process_document,
    inputs=["image", "text"],
    outputs="json",
    title="Neurons Lab Demo: DocVQA",
    description=description,
    enable_queue=True,
    examples=[["Tesla_10Q_2023.png", "What is automotive sales revenue in 2022?"], ["Toshiba.png", "What is weight of VN-M150HE?"]],
    cache_examples=False)

demo.launch()