Aita / app.py
Artificial-superintelligence's picture
Update app.py
04676e1 verified
raw
history blame
3.34 kB
import streamlit as st
from moviepy.editor import VideoFileClip
import whisper
from translate import Translator
from gtts import gTTS
import tempfile
import os
import numpy as np
# Initialize Whisper model
try:
whisper_model = whisper.load_model("base") # Ensure the model is installed from the correct Whisper library
except AttributeError:
st.error("Whisper model could not be loaded. Ensure that Whisper is installed from GitHub.")
# Language options
LANGUAGES = {
'English': 'en',
'Tamil': 'ta',
'Sinhala': 'si',
'French': 'fr', # Add more languages as needed
}
st.title("AI Video Translator with Whisper and GTTS")
# Step 1: Upload video file
video_file = st.file_uploader("Upload a video file", type=["mp4", "mov", "avi", "mkv"])
if video_file:
# Step 2: Select translation language
target_language = st.selectbox("Select the target language for translation", list(LANGUAGES.keys()))
# Process when user clicks translate
if st.button("Translate Video"):
# Save video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video:
temp_video.write(video_file.read())
temp_video_path = temp_video.name
# Extract audio from video
try:
video = VideoFileClip(temp_video_path)
audio_path = tempfile.mktemp(suffix=".wav")
video.audio.write_audiofile(audio_path)
except Exception as e:
st.error(f"Error extracting audio from video: {e}")
os.remove(temp_video_path)
st.stop()
# Function to transcribe audio in chunks
def transcribe_audio_in_chunks(audio_path, model, chunk_length=30):
audio_clip = whisper.load_audio(audio_path)
audio_duration = whisper.get_duration(audio_clip)
segments = []
for start in np.arange(0, audio_duration, chunk_length):
end = min(start + chunk_length, audio_duration)
segment = audio_clip[int(start * 16000):int(end * 16000)] # Convert to the right format
result = model.transcribe(segment)
segments.append(result['text'])
return ' '.join(segments)
# Transcribe audio using Whisper
try:
original_text = transcribe_audio_in_chunks(audio_path, whisper_model)
st.write("Original Transcription:", original_text)
# Translate text to the target language
translator = Translator(to_lang=LANGUAGES[target_language])
translated_text = translator.translate(original_text)
st.write(f"Translated Text ({target_language}):", translated_text)
# Convert translated text to speech
tts = gTTS(text=translated_text, lang=LANGUAGES[target_language])
audio_output_path = tempfile.mktemp(suffix=".mp3")
tts.save(audio_output_path)
# Display translated text and audio
st.success("Translation successful!")
st.audio(audio_output_path, format="audio/mp3")
except Exception as e:
st.error(f"Error during transcription/translation: {e}")
# Clean up temporary files
os.remove(temp_video_path)
os.remove(audio_path)
os.remove(audio_output_path)