Spaces:
Runtime error
Runtime error
File size: 5,055 Bytes
8d4c60f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import logging
import os
import sys
from io import BytesIO
from json import loads
import av
import pilk
from flask import Flask
from torch import load, FloatTensor
from numpy import float32
import librosa
from voice import Voice
app = Flask(__name__)
app.config.from_pyfile("config.py")
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
def load_checkpoint(checkpoint_path, model):
checkpoint_dict = load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
logging.info("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
logging.info("Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path, iteration))
return
def get_hparams_from_file(config_path):
with open(config_path, "r") as f:
data = f.read()
config = loads(data)
hparams = HParams(**config)
return hparams
def load_audio_to_torch(full_path, target_sampling_rate):
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
return FloatTensor(audio.astype(float32))
def wav2ogg(input, output):
with av.open(input, 'rb') as i:
with av.open(output, 'wb', format='ogg') as o:
out_stream = o.add_stream('libvorbis')
for frame in i.decode(audio=0):
for p in out_stream.encode(frame):
o.mux(p)
for p in out_stream.encode(None):
o.mux(p)
# def wav2silk(input, output):
# with av.open(input) as in_wav:
# in_stream = in_wav.streams.audio[0]
# sample_rate = in_stream.codec_context.sample_rate
# with BytesIO() as pcm:
# with av.open(pcm, 'w', 's16le') as out_pcm:
# out_stream = out_pcm.add_stream(
# 'pcm_s16le',
# rate=sample_rate,
# layout='mono'
# )
# for frame in in_wav.decode(in_stream):
# frame.pts = None
# for packet in out_stream.encode(frame):
# out_pcm.mux(packet)
#
# pilk.encode(out_pcm, output, pcm_rate=sample_rate, tencent=True)
def to_pcm(in_path: str) -> tuple[str, int]:
out_path = os.path.splitext(in_path)[0] + '.pcm'
with av.open(in_path) as in_container:
in_stream = in_container.streams.audio[0]
sample_rate = in_stream.codec_context.sample_rate
with av.open(out_path, 'w', 's16le') as out_container:
out_stream = out_container.add_stream(
'pcm_s16le',
rate=sample_rate,
layout='mono'
)
try:
for frame in in_container.decode(in_stream):
frame.pts = None
for packet in out_stream.encode(frame):
out_container.mux(packet)
except:
pass
return out_path, sample_rate
def convert_to_silk(media_path: str) -> str:
pcm_path, sample_rate = to_pcm(media_path)
silk_path = os.path.splitext(pcm_path)[0] + '.silk'
pilk.encode(pcm_path, silk_path, pcm_rate=sample_rate, tencent=True)
os.remove(pcm_path)
return silk_path
def clean_folder(folder_path):
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
# 如果是文件,则删除文件
if os.path.isfile(file_path):
os.remove(file_path)
def merge_model(merging_model):
voice_obj = []
voice_speakers = []
new_id = 0
out_path = os.path.dirname(os.path.realpath(sys.argv[0])) + "/out_silk"
for obj_id, i in enumerate(merging_model):
obj = Voice(i[0], i[1], out_path)
for id, name in enumerate(obj.return_speakers()):
voice_obj.append([int(id), obj, obj_id])
voice_speakers.append({new_id: name})
new_id += 1
return voice_obj, voice_speakers
|