Spaces:
Runtime error
Runtime error
import torch | |
from torch import no_grad, LongTensor | |
import utils | |
from utils import get_hparams_from_file, lang_dict | |
from vits import commons | |
from vits.mel_processing import spectrogram_torch | |
from vits.text import text_to_sequence | |
from vits.models import SynthesizerTrn | |
class VITS: | |
def __init__(self, model_path, config, device="cpu", **kwargs): | |
self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config | |
self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0) | |
self.n_symbols = len(getattr(self.hps_ms, 'symbols', [])) | |
self.speakers = getattr(self.hps_ms, 'speakers', ['0']) | |
if not isinstance(self.speakers, list): | |
self.speakers = [item[0] for item in sorted(list(self.speakers.items()), key=lambda x: x[1])] | |
self.bert_embedding = getattr(self.hps_ms.data, 'bert_embedding', | |
getattr(self.hps_ms.model, 'bert_embedding', False)) | |
self.hps_ms.model.bert_embedding = self.bert_embedding | |
self.text_cleaners = getattr(self.hps_ms.data, 'text_cleaners', [None])[0] | |
self.sampling_rate = self.hps_ms.data.sampling_rate | |
self.device = device | |
self.model_path = model_path | |
# load checkpoint | |
# self.load_model() | |
self.lang = lang_dict.get(self.text_cleaners, ["unknown"]) | |
def load_model(self): | |
self.net_g_ms = SynthesizerTrn( | |
self.n_symbols, | |
self.hps_ms.data.filter_length // 2 + 1, | |
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, | |
n_speakers=self.n_speakers, | |
**self.hps_ms.model) | |
_ = self.net_g_ms.eval() | |
utils.load_checkpoint(self.model_path, self.net_g_ms) | |
self.net_g_ms.to(self.device) | |
def release_model(self): | |
del self.net_g_ms | |
def get_cleaned_text(self, text, hps, cleaned=False): | |
if cleaned: | |
text_norm = text_to_sequence(text, hps.symbols, []) | |
else: | |
if self.bert_embedding: | |
text_norm, char_embed = text_to_sequence(text, hps.symbols, hps.data.text_cleaners, | |
bert_embedding=self.bert_embedding) | |
text_norm = LongTensor(text_norm) | |
return text_norm, char_embed | |
else: | |
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = LongTensor(text_norm) | |
return text_norm | |
def infer(self, text, id, noise, noisew, length, cleaned=False, **kwargs): | |
char_embeds = None | |
if self.bert_embedding: | |
stn_tst, char_embeds = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned) | |
else: | |
stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned) | |
id = LongTensor([id]) | |
with no_grad(): | |
x_tst = stn_tst.unsqueeze(0).to(self.device) | |
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(self.device) | |
x_tst_prosody = torch.FloatTensor(char_embeds).unsqueeze(0).to( | |
self.device) if self.bert_embedding else None | |
id = id.to(self.device) | |
audio = self.net_g_ms.infer(x=x_tst, | |
x_lengths=x_tst_lengths, | |
sid=id, | |
noise_scale=noise, | |
noise_scale_w=noisew, | |
length_scale=length, | |
bert=x_tst_prosody)[0][0, 0].data.float().cpu().numpy() | |
torch.cuda.empty_cache() | |
return audio | |
def voice_conversion(self, audio_path, original_id, target_id): | |
audio = utils.load_audio_to_torch( | |
audio_path, self.sampling_rate) | |
y = audio.unsqueeze(0) | |
spec = spectrogram_torch(y, self.hps_ms.data.filter_length, | |
self.sampling_rate, self.hps_ms.data.hop_length, | |
self.hps_ms.data.win_length, | |
center=False) | |
spec_lengths = LongTensor([spec.size(-1)]) | |
sid_src = LongTensor([original_id]) | |
with no_grad(): | |
sid_tgt = LongTensor([target_id]) | |
audio = self.net_g_ms.voice_conversion(spec.to(self.device), | |
spec_lengths.to(self.device), | |
sid_src=sid_src.to(self.device), | |
sid_tgt=sid_tgt.to(self.device))[0][0, 0].data.cpu().float().numpy() | |
torch.cuda.empty_cache() | |
return audio | |