import json import re import requests import os import time import random import string from requests_toolbelt.multipart.encoder import MultipartEncoder absolute_path = os.path.dirname(__file__) base_url = "http://127.0.0.1:23456" # 映射表 def voice_speakers(): url = f"{base_url}/voice/speakers" res = requests.post(url=url) json = res.json() for i in json: print(i) for j in json[i]: print(j) return json # 语音合成 voice vits def voice_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50, save_audio=True, save_path=None): fields = { "text": text, "id": str(id), "format": format, "lang": lang, "length": str(length), "noise": str(noise), "noisew": str(noisew), "segment_size": str(segment_size) } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice/vits" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None def voice_vits_streaming(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50, save_audio=True, save_path=None): fields = { "text": text, "id": str(id), "format": format, "lang": lang, "length": str(length), "noise": str(noise), "noisew": str(noisew), "segment_size": str(segment_size), "streaming": 'True' } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None def voice_vits_streaming(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50, save_path=None): fields = { "text": text, "id": str(id), "format": format, "lang": lang, "length": str(length), "noise": str(noise), "noisew": str(noisew), "segment_size": str(segment_size), "streaming": 'True' } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice" res = requests.post(url=url, data=m, headers=headers, stream=True) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) audio = res.content def get_file_size_from_bytes(byte_data): file_size_offset = 4 file_size_length = 4 try: file_size_bytes = byte_data[file_size_offset:file_size_offset + file_size_length] file_size = int.from_bytes(file_size_bytes, byteorder='little') return file_size + 8 except IndexError: return None audio = None p = 0 audio_size = None audios = [] for chunk in res.iter_content(chunk_size=1024): if audio is None: audio = chunk else: audio += chunk p += len(chunk) if audio_size is not None: if p >= audio_size: p = p - audio_size audios.append(audio[:audio_size]) audio = audio[audio_size:] audio_size = get_file_size_from_bytes(audio) else: audio_size = get_file_size_from_bytes(audio) for i, audio in enumerate(audios): with open(f"{path[:-4]}-{i}.wav", "wb") as f: f.write(audio) print(f"{path[:-4]}-{i}.wav") return path # 语音转换 hubert-vits def voice_hubert_vits(upload_path, id, format="wav", length=1, noise=0.667, noisew=0.8, save_audio=True, save_path=None): upload_name = os.path.basename(upload_path) upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg with open(upload_path, 'rb') as upload_file: fields = { "upload": (upload_name, upload_file, upload_type), "id": str(id), "format": format, "length": str(length), "noise": str(noise), "noisew": str(noisew), } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice/hubert-vits" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None # 维度情感模型 w2v2-vits def voice_w2v2_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50, emotion=0, save_audio=True, save_path=None): fields = { "text": text, "id": str(id), "format": format, "lang": lang, "length": str(length), "noise": str(noise), "noisew": str(noisew), "segment_size": str(segment_size), "emotion": str(emotion) } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice/w2v2-vits" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None # 语音转换 同VITS模型内角色之间的音色转换 def voice_conversion(upload_path, original_id, target_id, save_audio=True, save_path=None): upload_name = os.path.basename(upload_path) upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg with open(upload_path, 'rb') as upload_file: fields = { "upload": (upload_name, upload_file, upload_type), "original_id": str(original_id), "target_id": str(target_id), } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice/conversion" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None def voice_ssml(ssml, save_audio=True, save_path=None): fields = { "ssml": ssml, } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice/ssml" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None def voice_dimensional_emotion(upload_path, save_audio=True, save_path=None): upload_name = os.path.basename(upload_path) upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg with open(upload_path, 'rb') as upload_file: fields = { "upload": (upload_name, upload_file, upload_type), } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice/dimension-emotion" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None def vits_json(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50, save_audio=True, save_path=None): fields = { "text": text, "id": str(id), "format": format, "lang": lang, "length": str(length), "noise": str(noise), "noisew": str(noisew), "segment_size": str(segment_size) } f = json.dumps(fields) url = f"{base_url}/voice" header = {"Content-Type": 'application/json'} res = requests.post(url=url, data=f, headers=header) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) with open(path, "wb") as f: f.write(res.content) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None # Bert_vits2 def voice_bert_vits2(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, segment_size=50, sdp_ratio=0.2, save_audio=True, save_path=None): fields = { "text": text, "id": str(id), "format": format, "lang": lang, "length": str(length), "noise": str(noise), "noisew": str(noisew), "segment_size": str(segment_size), "sdp_ratio": str(sdp_ratio) } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice/bert-vits2" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None # gpt_sovits def voice_gpt_sovits(text, id=0, format="wav", lang="auto", preset=None, prompt_text=None, prompt_lang="auto", segment_size=50, reference_audio=None, save_audio=True, save_path=None): upload_name, upload_type, upload_file = None, None, None if reference_audio is not None: upload_name = os.path.basename(reference_audio) upload_type = f'audio/{upload_name.split(".")[1]}' with open(reference_audio, 'rb') as f: upload_file = f.read() fields = { "text": text, "id": str(id), "format": format, "lang": lang, "segment_size": str(segment_size), "preset": preset, "reference_audio": (upload_name, upload_file, upload_type) if reference_audio else None, "prompt_text": prompt_text, "prompt_lang": prompt_lang } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice/gpt-sovits" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None # Reading def voice_reading_get(text, in_model_type, in_id, nr_model_type, nr_id, format="wav", lang="auto", preset=None, save_audio=True, save_path=None): res = requests.get( url=f"{base_url}/voice/reading?text={text}&in_model_type={in_model_type}&in_id={in_id}&preset={preset}&nr_model_type={nr_model_type}&nr_id={nr_id}&lang={lang}&format={format}") fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) with open(path, "wb") as f: f.write(res.content) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None # Reading def voice_reading_json(text, in_model_type, in_id, nr_model_type, nr_id, format="wav", lang="auto", preset=None, save_audio=True, save_path=None): fields = { "text": text, "in_model_type": in_model_type, "in_id": str(in_id), "nr_model_type": nr_model_type, "nr_id": str(nr_id), "format": format, "lang": lang, } f = json.dumps(fields) url = f"{base_url}/voice/reading" header = {"Content-Type": 'application/json'} res = requests.post(url=url, data=f, headers=header) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) with open(path, "wb") as f: f.write(res.content) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None # Reading def voice_reading(text, in_model_type, in_id, nr_model_type, nr_id, format="wav", lang="auto", preset=None, save_audio=True, save_path=None): fields = { "text": text, "in_model_type": in_model_type, "in_id": str(in_id), "nr_model_type": nr_model_type, "nr_id": str(nr_id), "format": format, "lang": lang, } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base_url}/voice/reading" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] if save_path is not None: path = os.path.join(save_path, fname) else: path = os.path.join(absolute_path, fname) if save_audio: with open(path, "wb") as f: f.write(res.content) print(path) return path return None def test_interface(text): error_num = 0 for i in range(100): try: time.sleep(1) t1 = time.time() voice_vits(text, format="wav", lang="zh", save_audio=False) t2 = time.time() print(f"{i}:len:{len(text)}耗时:{t2 - t1}") except Exception as e: error_num += 1 print(e) print(f"error_num={error_num}") if __name__ == '__main__': cache_path = os.path.join(os.path.curdir, "cache") text = "你好,こんにちは" ssml = """ 这几天心里颇不宁静。 今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。 月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了; 妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。 我悄悄地披了大衫,带上门出去。 沿着荷塘,是一条曲折的小煤屑路。 这是一条幽僻的路;白天也少人走,夜晚更加寂寞。 荷塘四面,长着许多树,蓊蓊郁郁的。 路的一旁,是些杨柳,和一些不知道名字的树。 没有月光的晚上,这路上阴森森的,有些怕人。 今晚却很好,虽然月光也还是淡淡的。 路上只我一个人,背着手踱着。 这一片天地好像是我的;我也像超出了平常的自己,到了另一个世界里。 我爱热闹,也爱冷静;爱群居,也爱独处。 像今晚上,一个人在这苍茫的月下,什么都可以想,什么都可以不想,便觉是个自由的人。 白天里一定要做的事,一定要说的话,现在都可不理。 这是独处的妙处,我且受用这无边的荷香月色好了。 """ # path = voice_vits(text, save_path=cache_path) # path =voice_vits_streaming(text, save_path=cache_path) # path = voice_w2v2_vits(text, save_path=cache_path) # path = voice_conversion(path, 1, 3, save_path=cache_path) # path = voice_hubert_vits(path, 0, save_path=cache_path) # path = voice_dimensional_emotion(path, save_path=cache_path) # path = voice_ssml(ssml, save_path=cache_path) # path = voice_bert_vits2("你好", lang="zh", save_path=cache_path) # path = voice_bert_vits2("こんにちは", lang="ja", save_path=cache_path) # path = voice_gpt_sovits(text=text, id=2, preset="wz") # path = voice_gpt_sovits(text=text, id=2, reference_audio=r"H:\git\vits-simple-api\data\reference_audio\wz_10068.wav",prompt_text="……嗯……大概、快上课的时候开始的。到这个程度的话,……半个小时吧?") # os.system(path) # text = "你好“你的修炼速度有些出乎我的意料”" # path = voice_reading_json(text=text, in_model_type="GPT-SOVITS", preset="wz", in_id=2, nr_model_type="BERT-VITS2", # nr_id=0) # os.system(path)