Spaces:
Sleeping
Sleeping
File size: 18,170 Bytes
960cd20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import logging
import numpy as np
import torch
from bert_vits2 import commons
from bert_vits2 import utils as bert_vits2_utils
from bert_vits2.clap_wrapper import get_clap_audio_feature, get_clap_text_feature
from bert_vits2.get_emo import get_emo
from bert_vits2.models import SynthesizerTrn
from bert_vits2.models_v230 import SynthesizerTrn as SynthesizerTrn_v230
from bert_vits2.models_ja_extra import SynthesizerTrn as SynthesizerTrn_ja_extra
from bert_vits2.text import *
from bert_vits2.text.cleaner import clean_text
from bert_vits2.utils import process_legacy_versions
from contants import config
from utils import get_hparams_from_file
from utils.sentence import split_languages
class Bert_VITS2:
def __init__(self, model_path, config, device=torch.device("cpu"), **kwargs):
self.model_path = model_path
self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config
self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0)
self.speakers = [item[0] for item in
sorted(list(getattr(self.hps_ms.data, 'spk2id', {'0': 0}).items()), key=lambda x: x[1])]
self.symbols = symbols
self.sampling_rate = self.hps_ms.data.sampling_rate
self.bert_model_names = {}
self.zh_bert_extra = False
self.ja_bert_extra = False
self.ja_bert_dim = 1024
self.num_tones = num_tones
self.pinyinPlus = None
# Compatible with legacy versions
self.version = process_legacy_versions(self.hps_ms).lower().replace("-", "_")
self.text_extra_str_map = {"zh": "", "ja": "", "en": ""}
self.bert_extra_str_map = {"zh": "", "ja": "", "en": ""}
self.hps_ms.model.emotion_embedding = None
if self.version in ["1.0", "1.0.0", "1.0.1"]:
"""
chinese-roberta-wwm-ext-large
"""
self.version = "1.0"
self.symbols = symbols_legacy
self.hps_ms.model.n_layers_trans_flow = 3
self.lang = getattr(self.hps_ms.data, "lang", ["zh"])
self.ja_bert_dim = 768
self.num_tones = num_tones_v111
self.text_extra_str_map.update({"zh": "_v100"})
elif self.version in ["1.1.0-transition"]:
"""
chinese-roberta-wwm-ext-large
"""
self.version = "1.1.0-transition"
self.hps_ms.model.n_layers_trans_flow = 3
self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja"])
self.ja_bert_dim = 768
self.num_tones = num_tones_v111
if "ja" in self.lang: self.bert_model_names.update({"ja": "BERT_BASE_JAPANESE_V3"})
self.text_extra_str_map.update({"zh": "_v100", "ja": "_v111"})
self.bert_extra_str_map.update({"ja": "_v111"})
elif self.version in ["1.1", "1.1.0", "1.1.1"]:
"""
chinese-roberta-wwm-ext-large
bert-base-japanese-v3
"""
self.version = "1.1"
self.hps_ms.model.n_layers_trans_flow = 6
self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja"])
self.ja_bert_dim = 768
self.num_tones = num_tones_v111
if "ja" in self.lang: self.bert_model_names.update({"ja": "BERT_BASE_JAPANESE_V3"})
self.text_extra_str_map.update({"zh": "_v100", "ja": "_v111"})
self.bert_extra_str_map.update({"ja": "_v111"})
elif self.version in ["2.0", "2.0.0", "2.0.1", "2.0.2"]:
"""
chinese-roberta-wwm-ext-large
deberta-v2-large-japanese
deberta-v3-large
"""
self.version = "2.0"
self.hps_ms.model.n_layers_trans_flow = 4
self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
self.num_tones = num_tones
if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE"})
if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})
self.text_extra_str_map.update({"zh": "_v100", "ja": "_v200", "en": "_v200"})
self.bert_extra_str_map.update({"ja": "_v200", "en": "_v200"})
elif self.version in ["2.1", "2.1.0"]:
"""
chinese-roberta-wwm-ext-large
deberta-v2-large-japanese-char-wwm
deberta-v3-large
wav2vec2-large-robust-12-ft-emotion-msp-dim
"""
self.version = "2.1"
self.hps_ms.model.n_layers_trans_flow = 4
self.hps_ms.model.emotion_embedding = 1
self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
self.num_tones = num_tones
if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})
elif self.version in ["2.2", "2.2.0"]:
"""
chinese-roberta-wwm-ext-large
deberta-v2-large-japanese-char-wwm
deberta-v3-large
clap-htsat-fused
"""
self.version = "2.2"
self.hps_ms.model.n_layers_trans_flow = 4
self.hps_ms.model.emotion_embedding = 2
self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
self.num_tones = num_tones
if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})
elif self.version in ["2.3", "2.3.0"]:
"""
chinese-roberta-wwm-ext-large
deberta-v2-large-japanese-char-wwm
deberta-v3-large
"""
self.version = "2.3"
self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
self.num_tones = num_tones
self.text_extra_str_map.update({"en": "_v230"})
if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})
elif self.version is not None and self.version in ["extra", "zh_clap"]:
"""
Erlangshen-MegatronBert-1.3B-Chinese
clap-htsat-fused
"""
self.version = "extra"
self.hps_ms.model.emotion_embedding = 2
self.hps_ms.model.n_layers_trans_flow = 6
self.lang = ["zh"]
self.num_tones = num_tones
self.zh_bert_extra = True
self.bert_model_names.update({"zh": "Erlangshen_MegatronBert_1.3B_Chinese"})
self.bert_extra_str_map.update({"zh": "_extra"})
elif self.version is not None and self.version in ["extra_fix", "2.4", "2.4.0"]:
"""
Erlangshen-MegatronBert-1.3B-Chinese
clap-htsat-fused
"""
self.version = "2.4"
self.hps_ms.model.emotion_embedding = 2
self.hps_ms.model.n_layers_trans_flow = 6
self.lang = ["zh"]
self.num_tones = num_tones
self.zh_bert_extra = True
self.bert_model_names.update({"zh": "Erlangshen_MegatronBert_1.3B_Chinese"})
self.bert_extra_str_map.update({"zh": "_extra"})
self.text_extra_str_map.update({"zh": "_v240"})
elif self.version is not None and self.version in ["ja_extra"]:
"""
deberta-v2-large-japanese-char-wwm
"""
self.version = "ja_extra"
self.hps_ms.model.emotion_embedding = 2
self.hps_ms.model.n_layers_trans_flow = 6
self.lang = ["ja"]
self.num_tones = num_tones
self.ja_bert_extra = True
self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
self.bert_extra_str_map.update({"ja": "_extra"})
self.text_extra_str_map.update({"ja": "_extra"})
else:
logging.debug("Version information not found. Loaded as the newest version: v2.3.")
self.version = "2.3"
self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
self.num_tones = num_tones
self.text_extra_str_map.update({"en": "_v230"})
if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})
if "zh" in self.lang and "zh" not in self.bert_model_names.keys():
self.bert_model_names.update({"zh": "CHINESE_ROBERTA_WWM_EXT_LARGE"})
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
self.device = device
def load_model(self, model_handler):
self.model_handler = model_handler
if self.version in ["2.3", "extra", "2.4"]:
Synthesizer = SynthesizerTrn_v230
elif self.version == "ja_extra":
Synthesizer = SynthesizerTrn_ja_extra
else:
Synthesizer = SynthesizerTrn
if self.version == "2.4":
self.pinyinPlus = self.model_handler.get_pinyinPlus()
self.net_g = Synthesizer(
len(self.symbols),
self.hps_ms.data.filter_length // 2 + 1,
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
n_speakers=self.hps_ms.data.n_speakers,
symbols=self.symbols,
ja_bert_dim=self.ja_bert_dim,
num_tones=self.num_tones,
zh_bert_extra=self.zh_bert_extra,
**self.hps_ms.model).to(self.device)
_ = self.net_g.eval()
bert_vits2_utils.load_checkpoint(self.model_path, self.net_g, None, skip_optimizer=True, version=self.version)
def get_speakers(self):
return self.speakers
def get_text(self, text, language_str, hps, style_text=None, style_weight=0.7):
clean_text_lang_str = language_str + self.text_extra_str_map.get(language_str, "")
bert_feature_lang_str = language_str + self.bert_extra_str_map.get(language_str, "")
tokenizer, _ = self.model_handler.get_bert_model(self.bert_model_names[language_str])
norm_text, phone, tone, word2ph = clean_text(text, clean_text_lang_str, tokenizer, self.pinyinPlus)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, self._symbol_to_id)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
if style_text == "" or self.zh_bert_extra:
style_text = None
bert = self.model_handler.get_bert_feature(norm_text, word2ph, bert_feature_lang_str,
self.bert_model_names[language_str], style_text, style_weight)
del word2ph
assert bert.shape[-1] == len(phone), phone
if self.zh_bert_extra:
zh_bert = bert
ja_bert, en_bert = None, None
elif self.ja_bert_extra:
ja_bert = bert
zh_bert, en_bert = None, None
elif language_str == "zh":
zh_bert = bert
ja_bert = torch.zeros(self.ja_bert_dim, len(phone))
en_bert = torch.zeros(1024, len(phone))
elif language_str == "ja":
zh_bert = torch.zeros(1024, len(phone))
ja_bert = bert
en_bert = torch.zeros(1024, len(phone))
elif language_str == "en":
zh_bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(self.ja_bert_dim, len(phone))
en_bert = bert
else:
zh_bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(self.ja_bert_dim, len(phone))
en_bert = torch.zeros(1024, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return zh_bert, ja_bert, en_bert, phone, tone, language
def _get_emo(self, reference_audio, emotion):
if reference_audio:
emo = torch.from_numpy(
get_emo(reference_audio, self.model_handler.emotion_model,
self.model_handler.emotion_processor))
else:
if emotion is None: emotion = 0
emo = torch.Tensor([emotion])
return emo
def _get_clap(self, reference_audio, text_prompt):
if isinstance(reference_audio, np.ndarray):
emo = get_clap_audio_feature(reference_audio, self.model_handler.clap_model,
self.model_handler.clap_processor, self.device)
else:
if text_prompt is None: text_prompt = config.bert_vits2_config.text_prompt
emo = get_clap_text_feature(text_prompt, self.model_handler.clap_model,
self.model_handler.clap_processor, self.device)
emo = torch.squeeze(emo, dim=1).unsqueeze(0)
return emo
def _infer(self, id, phones, tones, lang_ids, zh_bert, ja_bert, en_bert, sdp_ratio, noise, noisew, length,
emo=None):
with torch.no_grad():
x_tst = phones.to(self.device).unsqueeze(0)
tones = tones.to(self.device).unsqueeze(0)
lang_ids = lang_ids.to(self.device).unsqueeze(0)
if self.zh_bert_extra:
zh_bert = zh_bert.to(self.device).unsqueeze(0)
elif self.ja_bert_extra:
ja_bert = ja_bert.to(self.device).unsqueeze(0)
else:
zh_bert = zh_bert.to(self.device).unsqueeze(0)
ja_bert = ja_bert.to(self.device).unsqueeze(0)
en_bert = en_bert.to(self.device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(self.device)
speakers = torch.LongTensor([int(id)]).to(self.device)
audio = self.net_g.infer(x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
zh_bert=zh_bert,
ja_bert=ja_bert,
en_bert=en_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
emo=emo
)[0][0, 0].data.cpu().float().numpy()
torch.cuda.empty_cache()
return audio
def infer(self, text, id, lang, sdp_ratio, noise, noisew, length, reference_audio=None, emotion=None,
text_prompt=None, style_text=None, style_weigth=0.7, **kwargs):
zh_bert, ja_bert, en_bert, phones, tones, lang_ids = self.get_text(text, lang, self.hps_ms, style_text,
style_weigth)
emo = None
if self.hps_ms.model.emotion_embedding == 1:
emo = self._get_emo(reference_audio, emotion).to(self.device).unsqueeze(0)
elif self.hps_ms.model.emotion_embedding == 2:
emo = self._get_clap(reference_audio, text_prompt)
return self._infer(id, phones, tones, lang_ids, zh_bert, ja_bert, en_bert, sdp_ratio, noise, noisew, length,
emo)
def infer_multilang(self, text, id, lang, sdp_ratio, noise, noisew, length, reference_audio=None, emotion=None,
text_prompt=None, style_text=None, style_weigth=0.7, **kwargs):
sentences_list = split_languages(text, self.lang, expand_abbreviations=True, expand_hyphens=True)
emo = None
if self.hps_ms.model.emotion_embedding == 1:
emo = self._get_emo(reference_audio, emotion).to(self.device).unsqueeze(0)
elif self.hps_ms.model.emotion_embedding == 2:
emo = self._get_clap(reference_audio, text_prompt)
phones, tones, lang_ids, zh_bert, ja_bert, en_bert = [], [], [], [], [], []
for idx, (_text, lang) in enumerate(sentences_list):
skip_start = idx != 0
skip_end = idx != len(sentences_list) - 1
_zh_bert, _ja_bert, _en_bert, _phones, _tones, _lang_ids = self.get_text(_text, lang, self.hps_ms,
style_text, style_weigth)
if skip_start:
_phones = _phones[3:]
_tones = _tones[3:]
_lang_ids = _lang_ids[3:]
_zh_bert = _zh_bert[:, 3:]
_ja_bert = _ja_bert[:, 3:]
_en_bert = _en_bert[:, 3:]
if skip_end:
_phones = _phones[:-2]
_tones = _tones[:-2]
_lang_ids = _lang_ids[:-2]
_zh_bert = _zh_bert[:, :-2]
_ja_bert = _ja_bert[:, :-2]
_en_bert = _en_bert[:, :-2]
phones.append(_phones)
tones.append(_tones)
lang_ids.append(_lang_ids)
zh_bert.append(_zh_bert)
ja_bert.append(_ja_bert)
en_bert.append(_en_bert)
zh_bert = torch.cat(zh_bert, dim=1)
ja_bert = torch.cat(ja_bert, dim=1)
en_bert = torch.cat(en_bert, dim=1)
phones = torch.cat(phones, dim=0)
tones = torch.cat(tones, dim=0)
lang_ids = torch.cat(lang_ids, dim=0)
audio = self._infer(id, phones, tones, lang_ids, zh_bert, ja_bert, en_bert, sdp_ratio, noise,
noisew, length, emo)
return audio
|