File size: 18,170 Bytes
960cd20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import logging

import numpy as np
import torch

from bert_vits2 import commons
from bert_vits2 import utils as bert_vits2_utils
from bert_vits2.clap_wrapper import get_clap_audio_feature, get_clap_text_feature
from bert_vits2.get_emo import get_emo
from bert_vits2.models import SynthesizerTrn
from bert_vits2.models_v230 import SynthesizerTrn as SynthesizerTrn_v230
from bert_vits2.models_ja_extra import SynthesizerTrn as SynthesizerTrn_ja_extra
from bert_vits2.text import *
from bert_vits2.text.cleaner import clean_text
from bert_vits2.utils import process_legacy_versions
from contants import config
from utils import get_hparams_from_file
from utils.sentence import split_languages


class Bert_VITS2:
    def __init__(self, model_path, config, device=torch.device("cpu"), **kwargs):
        self.model_path = model_path
        self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config
        self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0)
        self.speakers = [item[0] for item in
                         sorted(list(getattr(self.hps_ms.data, 'spk2id', {'0': 0}).items()), key=lambda x: x[1])]
        self.symbols = symbols
        self.sampling_rate = self.hps_ms.data.sampling_rate

        self.bert_model_names = {}
        self.zh_bert_extra = False
        self.ja_bert_extra = False
        self.ja_bert_dim = 1024
        self.num_tones = num_tones
        self.pinyinPlus = None

        # Compatible with legacy versions
        self.version = process_legacy_versions(self.hps_ms).lower().replace("-", "_")
        self.text_extra_str_map = {"zh": "", "ja": "", "en": ""}
        self.bert_extra_str_map = {"zh": "", "ja": "", "en": ""}
        self.hps_ms.model.emotion_embedding = None
        if self.version in ["1.0", "1.0.0", "1.0.1"]:
            """
            chinese-roberta-wwm-ext-large
            """
            self.version = "1.0"
            self.symbols = symbols_legacy
            self.hps_ms.model.n_layers_trans_flow = 3
            self.lang = getattr(self.hps_ms.data, "lang", ["zh"])
            self.ja_bert_dim = 768
            self.num_tones = num_tones_v111
            self.text_extra_str_map.update({"zh": "_v100"})

        elif self.version in ["1.1.0-transition"]:
            """
            chinese-roberta-wwm-ext-large
            """
            self.version = "1.1.0-transition"
            self.hps_ms.model.n_layers_trans_flow = 3
            self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja"])
            self.ja_bert_dim = 768
            self.num_tones = num_tones_v111
            if "ja" in self.lang: self.bert_model_names.update({"ja": "BERT_BASE_JAPANESE_V3"})
            self.text_extra_str_map.update({"zh": "_v100", "ja": "_v111"})
            self.bert_extra_str_map.update({"ja": "_v111"})

        elif self.version in ["1.1", "1.1.0", "1.1.1"]:
            """
            chinese-roberta-wwm-ext-large
            bert-base-japanese-v3
            """
            self.version = "1.1"
            self.hps_ms.model.n_layers_trans_flow = 6
            self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja"])
            self.ja_bert_dim = 768
            self.num_tones = num_tones_v111
            if "ja" in self.lang: self.bert_model_names.update({"ja": "BERT_BASE_JAPANESE_V3"})
            self.text_extra_str_map.update({"zh": "_v100", "ja": "_v111"})
            self.bert_extra_str_map.update({"ja": "_v111"})

        elif self.version in ["2.0", "2.0.0", "2.0.1", "2.0.2"]:
            """
            chinese-roberta-wwm-ext-large
            deberta-v2-large-japanese
            deberta-v3-large
            """
            self.version = "2.0"
            self.hps_ms.model.n_layers_trans_flow = 4
            self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
            self.num_tones = num_tones
            if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE"})
            if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})
            self.text_extra_str_map.update({"zh": "_v100", "ja": "_v200", "en": "_v200"})
            self.bert_extra_str_map.update({"ja": "_v200", "en": "_v200"})

        elif self.version in ["2.1", "2.1.0"]:
            """
            chinese-roberta-wwm-ext-large
            deberta-v2-large-japanese-char-wwm
            deberta-v3-large
            wav2vec2-large-robust-12-ft-emotion-msp-dim
            """
            self.version = "2.1"
            self.hps_ms.model.n_layers_trans_flow = 4
            self.hps_ms.model.emotion_embedding = 1
            self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
            self.num_tones = num_tones
            if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
            if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})

        elif self.version in ["2.2", "2.2.0"]:
            """
            chinese-roberta-wwm-ext-large
            deberta-v2-large-japanese-char-wwm
            deberta-v3-large
            clap-htsat-fused
            """
            self.version = "2.2"
            self.hps_ms.model.n_layers_trans_flow = 4
            self.hps_ms.model.emotion_embedding = 2
            self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
            self.num_tones = num_tones
            if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
            if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})

        elif self.version in ["2.3", "2.3.0"]:
            """
            chinese-roberta-wwm-ext-large
            deberta-v2-large-japanese-char-wwm
            deberta-v3-large
            """
            self.version = "2.3"
            self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
            self.num_tones = num_tones
            self.text_extra_str_map.update({"en": "_v230"})
            if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
            if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})

        elif self.version is not None and self.version in ["extra", "zh_clap"]:
            """
            Erlangshen-MegatronBert-1.3B-Chinese
            clap-htsat-fused
            """
            self.version = "extra"
            self.hps_ms.model.emotion_embedding = 2
            self.hps_ms.model.n_layers_trans_flow = 6
            self.lang = ["zh"]
            self.num_tones = num_tones
            self.zh_bert_extra = True
            self.bert_model_names.update({"zh": "Erlangshen_MegatronBert_1.3B_Chinese"})
            self.bert_extra_str_map.update({"zh": "_extra"})

        elif self.version is not None and self.version in ["extra_fix", "2.4", "2.4.0"]:
            """
            Erlangshen-MegatronBert-1.3B-Chinese
            clap-htsat-fused
            """
            self.version = "2.4"
            self.hps_ms.model.emotion_embedding = 2
            self.hps_ms.model.n_layers_trans_flow = 6
            self.lang = ["zh"]
            self.num_tones = num_tones
            self.zh_bert_extra = True
            self.bert_model_names.update({"zh": "Erlangshen_MegatronBert_1.3B_Chinese"})
            self.bert_extra_str_map.update({"zh": "_extra"})
            self.text_extra_str_map.update({"zh": "_v240"})

        elif self.version is not None and self.version in ["ja_extra"]:
            """
            deberta-v2-large-japanese-char-wwm
            """
            self.version = "ja_extra"
            self.hps_ms.model.emotion_embedding = 2
            self.hps_ms.model.n_layers_trans_flow = 6
            self.lang = ["ja"]
            self.num_tones = num_tones
            self.ja_bert_extra = True
            self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
            self.bert_extra_str_map.update({"ja": "_extra"})
            self.text_extra_str_map.update({"ja": "_extra"})

        else:
            logging.debug("Version information not found. Loaded as the newest version: v2.3.")
            self.version = "2.3"
            self.lang = getattr(self.hps_ms.data, "lang", ["zh", "ja", "en"])
            self.num_tones = num_tones
            self.text_extra_str_map.update({"en": "_v230"})
            if "ja" in self.lang: self.bert_model_names.update({"ja": "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM"})
            if "en" in self.lang: self.bert_model_names.update({"en": "DEBERTA_V3_LARGE"})

        if "zh" in self.lang and "zh" not in self.bert_model_names.keys():
            self.bert_model_names.update({"zh": "CHINESE_ROBERTA_WWM_EXT_LARGE"})

        self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}

        self.device = device

    def load_model(self, model_handler):
        self.model_handler = model_handler

        if self.version in ["2.3", "extra", "2.4"]:
            Synthesizer = SynthesizerTrn_v230
        elif self.version == "ja_extra":
            Synthesizer = SynthesizerTrn_ja_extra
        else:
            Synthesizer = SynthesizerTrn

        if self.version == "2.4":
            self.pinyinPlus = self.model_handler.get_pinyinPlus()
        self.net_g = Synthesizer(
            len(self.symbols),
            self.hps_ms.data.filter_length // 2 + 1,
            self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
            n_speakers=self.hps_ms.data.n_speakers,
            symbols=self.symbols,
            ja_bert_dim=self.ja_bert_dim,
            num_tones=self.num_tones,
            zh_bert_extra=self.zh_bert_extra,
            **self.hps_ms.model).to(self.device)
        _ = self.net_g.eval()
        bert_vits2_utils.load_checkpoint(self.model_path, self.net_g, None, skip_optimizer=True, version=self.version)

    def get_speakers(self):
        return self.speakers

    def get_text(self, text, language_str, hps, style_text=None, style_weight=0.7):
        clean_text_lang_str = language_str + self.text_extra_str_map.get(language_str, "")
        bert_feature_lang_str = language_str + self.bert_extra_str_map.get(language_str, "")

        tokenizer, _ = self.model_handler.get_bert_model(self.bert_model_names[language_str])

        norm_text, phone, tone, word2ph = clean_text(text, clean_text_lang_str, tokenizer, self.pinyinPlus)

        phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, self._symbol_to_id)

        if hps.data.add_blank:
            phone = commons.intersperse(phone, 0)
            tone = commons.intersperse(tone, 0)
            language = commons.intersperse(language, 0)
            for i in range(len(word2ph)):
                word2ph[i] = word2ph[i] * 2
            word2ph[0] += 1

        if style_text == "" or self.zh_bert_extra:
            style_text = None

        bert = self.model_handler.get_bert_feature(norm_text, word2ph, bert_feature_lang_str,
                                                   self.bert_model_names[language_str], style_text, style_weight)
        del word2ph
        assert bert.shape[-1] == len(phone), phone

        if self.zh_bert_extra:
            zh_bert = bert
            ja_bert, en_bert = None, None
        elif self.ja_bert_extra:
            ja_bert = bert
            zh_bert, en_bert = None, None
        elif language_str == "zh":
            zh_bert = bert
            ja_bert = torch.zeros(self.ja_bert_dim, len(phone))
            en_bert = torch.zeros(1024, len(phone))
        elif language_str == "ja":
            zh_bert = torch.zeros(1024, len(phone))
            ja_bert = bert
            en_bert = torch.zeros(1024, len(phone))
        elif language_str == "en":
            zh_bert = torch.zeros(1024, len(phone))
            ja_bert = torch.zeros(self.ja_bert_dim, len(phone))
            en_bert = bert
        else:
            zh_bert = torch.zeros(1024, len(phone))
            ja_bert = torch.zeros(self.ja_bert_dim, len(phone))
            en_bert = torch.zeros(1024, len(phone))
        assert bert.shape[-1] == len(
            phone
        ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
        phone = torch.LongTensor(phone)
        tone = torch.LongTensor(tone)
        language = torch.LongTensor(language)
        return zh_bert, ja_bert, en_bert, phone, tone, language

    def _get_emo(self, reference_audio, emotion):
        if reference_audio:
            emo = torch.from_numpy(
                get_emo(reference_audio, self.model_handler.emotion_model,
                        self.model_handler.emotion_processor))
        else:
            if emotion is None: emotion = 0
            emo = torch.Tensor([emotion])

        return emo

    def _get_clap(self, reference_audio, text_prompt):
        if isinstance(reference_audio, np.ndarray):
            emo = get_clap_audio_feature(reference_audio, self.model_handler.clap_model,
                                         self.model_handler.clap_processor, self.device)
        else:
            if text_prompt is None: text_prompt = config.bert_vits2_config.text_prompt
            emo = get_clap_text_feature(text_prompt, self.model_handler.clap_model,
                                        self.model_handler.clap_processor, self.device)
        emo = torch.squeeze(emo, dim=1).unsqueeze(0)
        return emo

    def _infer(self, id, phones, tones, lang_ids, zh_bert, ja_bert, en_bert, sdp_ratio, noise, noisew, length,
               emo=None):
        with torch.no_grad():
            x_tst = phones.to(self.device).unsqueeze(0)
            tones = tones.to(self.device).unsqueeze(0)
            lang_ids = lang_ids.to(self.device).unsqueeze(0)
            if self.zh_bert_extra:
                zh_bert = zh_bert.to(self.device).unsqueeze(0)
            elif self.ja_bert_extra:
                ja_bert = ja_bert.to(self.device).unsqueeze(0)
            else:
                zh_bert = zh_bert.to(self.device).unsqueeze(0)
                ja_bert = ja_bert.to(self.device).unsqueeze(0)
                en_bert = en_bert.to(self.device).unsqueeze(0)
            x_tst_lengths = torch.LongTensor([phones.size(0)]).to(self.device)
            speakers = torch.LongTensor([int(id)]).to(self.device)
            audio = self.net_g.infer(x_tst,
                                     x_tst_lengths,
                                     speakers,
                                     tones,
                                     lang_ids,
                                     zh_bert=zh_bert,
                                     ja_bert=ja_bert,
                                     en_bert=en_bert,
                                     sdp_ratio=sdp_ratio,
                                     noise_scale=noise,
                                     noise_scale_w=noisew,
                                     length_scale=length,
                                     emo=emo
                                     )[0][0, 0].data.cpu().float().numpy()

        torch.cuda.empty_cache()
        return audio

    def infer(self, text, id, lang, sdp_ratio, noise, noisew, length, reference_audio=None, emotion=None,
              text_prompt=None, style_text=None, style_weigth=0.7, **kwargs):
        zh_bert, ja_bert, en_bert, phones, tones, lang_ids = self.get_text(text, lang, self.hps_ms, style_text,
                                                                           style_weigth)

        emo = None
        if self.hps_ms.model.emotion_embedding == 1:
            emo = self._get_emo(reference_audio, emotion).to(self.device).unsqueeze(0)
        elif self.hps_ms.model.emotion_embedding == 2:
            emo = self._get_clap(reference_audio, text_prompt)

        return self._infer(id, phones, tones, lang_ids, zh_bert, ja_bert, en_bert, sdp_ratio, noise, noisew, length,
                           emo)

    def infer_multilang(self, text, id, lang, sdp_ratio, noise, noisew, length, reference_audio=None, emotion=None,
                        text_prompt=None, style_text=None, style_weigth=0.7, **kwargs):
        sentences_list = split_languages(text, self.lang, expand_abbreviations=True, expand_hyphens=True)

        emo = None
        if self.hps_ms.model.emotion_embedding == 1:
            emo = self._get_emo(reference_audio, emotion).to(self.device).unsqueeze(0)
        elif self.hps_ms.model.emotion_embedding == 2:
            emo = self._get_clap(reference_audio, text_prompt)

        phones, tones, lang_ids, zh_bert, ja_bert, en_bert = [], [], [], [], [], []

        for idx, (_text, lang) in enumerate(sentences_list):
            skip_start = idx != 0
            skip_end = idx != len(sentences_list) - 1
            _zh_bert, _ja_bert, _en_bert, _phones, _tones, _lang_ids = self.get_text(_text, lang, self.hps_ms,
                                                                                     style_text, style_weigth)

            if skip_start:
                _phones = _phones[3:]
                _tones = _tones[3:]
                _lang_ids = _lang_ids[3:]
                _zh_bert = _zh_bert[:, 3:]
                _ja_bert = _ja_bert[:, 3:]
                _en_bert = _en_bert[:, 3:]
            if skip_end:
                _phones = _phones[:-2]
                _tones = _tones[:-2]
                _lang_ids = _lang_ids[:-2]
                _zh_bert = _zh_bert[:, :-2]
                _ja_bert = _ja_bert[:, :-2]
                _en_bert = _en_bert[:, :-2]

            phones.append(_phones)
            tones.append(_tones)
            lang_ids.append(_lang_ids)
            zh_bert.append(_zh_bert)
            ja_bert.append(_ja_bert)
            en_bert.append(_en_bert)

        zh_bert = torch.cat(zh_bert, dim=1)
        ja_bert = torch.cat(ja_bert, dim=1)
        en_bert = torch.cat(en_bert, dim=1)
        phones = torch.cat(phones, dim=0)
        tones = torch.cat(tones, dim=0)
        lang_ids = torch.cat(lang_ids, dim=0)

        audio = self._infer(id, phones, tones, lang_ids, zh_bert, ja_bert, en_bert, sdp_ratio, noise,
                            noisew, length, emo)

        return audio