File size: 18,690 Bytes
960cd20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
放置公用模型
"""

import gc
import logging
import os

import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM, BertTokenizer, MegatronBertModel

from contants import config
from utils.download import download_file
from bert_vits2.text.chinese_bert import get_bert_feature as zh_bert
from bert_vits2.text.english_bert_mock import get_bert_feature as en_bert
from bert_vits2.text.japanese_bert import get_bert_feature as ja_bert
from bert_vits2.text.japanese_bert_v111 import get_bert_feature as ja_bert_v111
from bert_vits2.text.japanese_bert_v200 import get_bert_feature as ja_bert_v200
from bert_vits2.text.english_bert_mock_v200 import get_bert_feature as en_bert_v200
from bert_vits2.text.chinese_bert_extra import get_bert_feature as zh_bert_extra
from bert_vits2.text.japanese_bert_extra import get_bert_feature as ja_bert_extra


class ModelHandler:
    def __init__(self, device=config.system.device):
        self.DOWNLOAD_PATHS = {
            "CHINESE_ROBERTA_WWM_EXT_LARGE": [
                "https://huggingface.co/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin",
                "https://hf-mirror.com/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin",
            ],
            "BERT_BASE_JAPANESE_V3": [
                "https://huggingface.co/cl-tohoku/bert-base-japanese-v3/resolve/main/pytorch_model.bin",
                "https://hf-mirror.com/cl-tohoku/bert-base-japanese-v3/resolve/main/pytorch_model.bin",
            ],
            "BERT_LARGE_JAPANESE_V2": [
                "https://huggingface.co/cl-tohoku/bert-large-japanese-v2/resolve/main/pytorch_model.bin",
                "https://hf-mirror.com/cl-tohoku/bert-large-japanese-v2/resolve/main/pytorch_model.bin",
            ],
            "DEBERTA_V2_LARGE_JAPANESE": [
                "https://huggingface.co/ku-nlp/deberta-v2-large-japanese/resolve/main/pytorch_model.bin",
                "https://hf-mirror.com/ku-nlp/deberta-v2-large-japanese/resolve/main/pytorch_model.bin",
            ],
            "DEBERTA_V3_LARGE": [
                "https://huggingface.co/microsoft/deberta-v3-large/resolve/main/pytorch_model.bin",
                "https://hf-mirror.com/microsoft/deberta-v3-large/resolve/main/pytorch_model.bin",
            ],
            "SPM": [
                "https://huggingface.co/microsoft/deberta-v3-large/resolve/main/spm.model",
                "https://hf-mirror.com/microsoft/deberta-v3-large/resolve/main/spm.model",
            ],
            "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM": [
                "https://huggingface.co/ku-nlp/deberta-v2-large-japanese-char-wwm/resolve/main/pytorch_model.bin",
                "https://hf-mirror.com/ku-nlp/deberta-v2-large-japanese-char-wwm/resolve/main/pytorch_model.bin",
            ],
            "WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM": [
                "https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim/resolve/main/pytorch_model.bin",
                "https://hf-mirror.com/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim/resolve/main/pytorch_model.bin",
            ],
            "CLAP_HTSAT_FUSED": [
                "https://huggingface.co/laion/clap-htsat-fused/resolve/main/pytorch_model.bin?download=true",
                "https://hf-mirror.com/laion/clap-htsat-fused/resolve/main/pytorch_model.bin?download=true",
            ],
            "Erlangshen_MegatronBert_1.3B_Chinese": [
                "https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese/resolve/main/pytorch_model.bin",
                "https://hf-mirror.com/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese/resolve/main/pytorch_model.bin",
            ],
            "G2PWModel": [
                # "https://storage.googleapis.com/esun-ai/g2pW/G2PWModel-v2-onnx.zip",
                "https://huggingface.co/ADT109119/G2PWModel-v2-onnx/resolve/main/g2pw.onnx",
                "https://hf-mirror.com/ADT109119/G2PWModel-v2-onnx/resolve/main/g2pw.onnx",
            ],
            "CHINESE_HUBERT_BASE": [
                "https://huggingface.co/TencentGameMate/chinese-hubert-base/resolve/main/pytorch_model.bin",
                "https://hf-mirror.com/TencentGameMate/chinese-hubert-base/resolve/main/pytorch_model.bin",
            ]
        }

        self.SHA256 = {
            "CHINESE_ROBERTA_WWM_EXT_LARGE": "4ac62d49144d770c5ca9a5d1d3039c4995665a080febe63198189857c6bd11cd",
            "BERT_BASE_JAPANESE_V3": "e172862e0674054d65e0ba40d67df2a4687982f589db44aa27091c386e5450a4",
            "BERT_LARGE_JAPANESE_V2": "50212d714f79af45d3e47205faa356d0e5030e1c9a37138eadda544180f9e7c9",
            "DEBERTA_V2_LARGE_JAPANESE": "a6c15feac0dea77ab8835c70e1befa4cf4c2137862c6fb2443b1553f70840047",
            "DEBERTA_V3_LARGE": "dd5b5d93e2db101aaf281df0ea1216c07ad73620ff59c5b42dccac4bf2eef5b5",
            "SPM": "c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd",
            "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM": "bf0dab8ad87bd7c22e85ec71e04f2240804fda6d33196157d6b5923af6ea1201",
            "WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM": "176d9d1ce29a8bddbab44068b9c1c194c51624c7f1812905e01355da58b18816",
            "CLAP_HTSAT_FUSED": "1ed5d0215d887551ddd0a49ce7311b21429ebdf1e6a129d4e68f743357225253",
            "Erlangshen_MegatronBert_1.3B_Chinese": "3456bb8f2c7157985688a4cb5cecdb9e229cb1dcf785b01545c611462ffe3579",
            # "G2PWModel": "bb40c8c7b5baa755b2acd317c6bc5a65e4af7b80c40a569247fbd76989299999",
            "G2PWModel": "",
            "CHINESE_HUBERT_BASE": "2fefccd26c2794a583b80f6f7210c721873cb7ebae2c1cde3baf9b27855e24d8",
        }
        self.model_path = {
            "CHINESE_ROBERTA_WWM_EXT_LARGE": os.path.join(config.abs_path, config.system.data_path,
                                                          config.model_config.chinese_roberta_wwm_ext_large),
            "BERT_BASE_JAPANESE_V3": os.path.join(config.abs_path, config.system.data_path,
                                                  config.model_config.bert_base_japanese_v3),
            "BERT_LARGE_JAPANESE_V2": os.path.join(config.abs_path, config.system.data_path,
                                                   config.model_config.bert_large_japanese_v2),
            "DEBERTA_V2_LARGE_JAPANESE": os.path.join(config.abs_path, config.system.data_path,
                                                      config.model_config.deberta_v2_large_japanese),
            "DEBERTA_V3_LARGE": os.path.join(config.abs_path, config.system.data_path,
                                             config.model_config.deberta_v3_large),
            "DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM": os.path.join(config.abs_path, config.system.data_path,
                                                               config.model_config.deberta_v2_large_japanese_char_wwm),
            "WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM": os.path.join(config.abs_path, config.system.data_path,
                                                                        config.model_config.wav2vec2_large_robust_12_ft_emotion_msp_dim),
            "CLAP_HTSAT_FUSED": os.path.join(config.abs_path, config.system.data_path,
                                             config.model_config.clap_htsat_fused),
            "Erlangshen_MegatronBert_1.3B_Chinese": os.path.join(config.abs_path, config.system.data_path,
                                                                 config.model_config.erlangshen_MegatronBert_1_3B_Chinese),
            "G2PWModel": os.path.join(config.abs_path, config.system.data_path, config.model_config.g2pw_model),
            "CHINESE_HUBERT_BASE": os.path.join(config.abs_path, config.system.data_path,
                                                config.model_config.chinese_hubert_base),
        }

        self.lang_bert_func_map = {"zh": zh_bert, "en": en_bert, "ja": ja_bert, "ja_v111": ja_bert_v111,
                                   "ja_v200": ja_bert_v200, "en_v200": en_bert_v200, "zh_extra": zh_bert_extra,
                                   "ja_extra": ja_bert_extra}

        self.bert_models = {}  # Value: (tokenizer, model, reference_count)
        self.emotion = None
        self.clap = None
        self.pinyinPlus = None
        self.device = device
        self.ssl_model = None

        if config.bert_vits2_config.torch_data_type.lower() in ["float16", "fp16"]:
            self.torch_dtype = torch.float16
        else:
            self.torch_dtype = None

    @property
    def emotion_model(self):
        return self.emotion["model"]

    @property
    def emotion_processor(self):
        return self.emotion["processor"]

    @property
    def clap_model(self):
        return self.clap["model"]

    @property
    def clap_processor(self):
        return self.clap["processor"]

    def _download_model(self, model_name, target_path=None):
        urls = self.DOWNLOAD_PATHS[model_name]

        if target_path is None:
            target_path = os.path.join(self.model_path[model_name], "pytorch_model.bin")

        expected_sha256 = self.SHA256[model_name]
        success, message = download_file(urls, target_path, expected_sha256=expected_sha256)
        if not success:
            logging.error(f"Failed to download {model_name}: {message}")
        else:
            logging.info(f"{message}")

    def load_bert(self, bert_model_name, max_retries=3):
        if bert_model_name not in self.bert_models:
            retries = 0
            model_path = ""
            while retries < max_retries:
                model_path = self.model_path[bert_model_name]
                logging.info(f"Loading BERT model: {model_path}")
                try:
                    if bert_model_name == "Erlangshen_MegatronBert_1.3B_Chinese":
                        tokenizer = BertTokenizer.from_pretrained(model_path, torch_dtype=self.torch_dtype)
                        model = MegatronBertModel.from_pretrained(model_path, torch_dtype=self.torch_dtype).to(
                            self.device)
                    else:
                        tokenizer = AutoTokenizer.from_pretrained(model_path, torch_dtype=self.torch_dtype)
                        model = AutoModelForMaskedLM.from_pretrained(model_path, torch_dtype=self.torch_dtype).to(
                            self.device)
                    self.bert_models[bert_model_name] = (tokenizer, model, 1)  # 初始化引用计数为1
                    logging.info(f"Success loading: {model_path}")
                    break
                except Exception as e:
                    logging.error(f"Failed loading {model_path}. {e}")
                    logging.info(f"Trying to download.")
                    if bert_model_name == "DEBERTA_V3_LARGE" and not os.path.exists(
                            os.path.join(model_path, "spm.model")):
                        self._download_model("SPM", os.path.join(model_path, "spm.model"))
                    self._download_model(bert_model_name)
                    retries += 1
            if retries == max_retries:
                logging.error(f"Failed to load {model_path} after {max_retries} retries.")
        else:
            tokenizer, model, count = self.bert_models[bert_model_name]
            self.bert_models[bert_model_name] = (tokenizer, model, count + 1)

    def load_emotion(self, max_retries=3):
        """Bert-VITS2 v2.1 EmotionModel"""
        if self.emotion is None:
            from transformers import Wav2Vec2Processor
            from bert_vits2.get_emo import EmotionModel
            retries = 0
            model_path = self.model_path["WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM"]
            while retries < max_retries:
                logging.info(f"Loading WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM: {model_path}")
                try:
                    self.emotion = {}
                    self.emotion["model"] = EmotionModel.from_pretrained(model_path).to(self.device)
                    self.emotion["processor"] = Wav2Vec2Processor.from_pretrained(model_path)
                    self.emotion["reference_count"] = 1
                    logging.info(f"Success loading: {model_path}")
                    break
                except Exception as e:
                    logging.error(f"Failed loading {model_path}. {e}")
                    self._download_model("WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM")
                    retries += 1
            if retries == max_retries:
                logging.error(f"Failed to load {model_path} after {max_retries} retries.")
        else:
            self.emotion["reference_count"] += 1

    def release_emotion(self):
        if self.emotion is not None:
            self.emotion["reference_count"] -= 1
            if self.emotion["reference_count"] <= 0:
                del self.emotion
                self.emotion = None
                gc.collect()
                torch.cuda.empty_cache()
                logging.info(f"Emotion model has been released.")

    def load_clap(self, max_retries=3):
        """Bert-VITS2 v2.2 ClapModel"""
        if self.clap is None:
            from transformers import ClapModel, ClapProcessor
            retries = 0
            model_path = self.model_path["CLAP_HTSAT_FUSED"]
            while retries < max_retries:
                logging.info(f"Loading CLAP_HTSAT_FUSED: {model_path}")
                try:
                    self.clap = {}
                    self.clap["model"] = ClapModel.from_pretrained(model_path, torch_dtype=self.torch_dtype).to(
                        self.device)
                    self.clap["processor"] = ClapProcessor.from_pretrained(model_path, torch_dtype=self.torch_dtype)
                    self.clap["reference_count"] = 1
                    logging.info(f"Success loading: {model_path}")
                    break
                except Exception as e:
                    logging.error(f"Failed loading {model_path}. {e}")
                    self._download_model("CLAP_HTSAT_FUSED")
                    retries += 1
            if retries == max_retries:
                logging.error(f"Failed to load {model_path} after {max_retries} retries.")
        else:
            self.clap["reference_count"] += 1

    def release_clap(self):
        if self.clap is not None:
            self.clap["reference_count"] -= 1
            if self.clap["reference_count"] <= 0:
                del self.clap
                self.clap = None
                gc.collect()
                torch.cuda.empty_cache()
                logging.info(f"Clap model has been released.")

    def get_bert_model(self, bert_model_name):
        if bert_model_name not in self.bert_models:
            self.load_bert(bert_model_name)

        tokenizer, model, _ = self.bert_models[bert_model_name]
        return tokenizer, model

    def get_bert_feature(self, norm_text, word2ph, language, bert_model_name, style_text=None, style_weight=0.7):
        tokenizer, model = self.get_bert_model(bert_model_name)
        bert_feature = self.lang_bert_func_map[language](norm_text, word2ph, tokenizer, model, self.device,
                                                         style_text=style_text, style_weight=style_weight)
        return bert_feature

    def get_pinyinPlus(self):
        if self.pinyinPlus is None:
            from bert_vits2.g2pW.pypinyin_G2pW_bv2 import G2PWPinyin

            logging.info(f"Loading G2PWModel: {self.model_path['G2PWModel']}")
            self.pinyinPlus = G2PWPinyin(
                model_dir=self.model_path["G2PWModel"],
                model_source=self.model_path["Erlangshen_MegatronBert_1.3B_Chinese"],
                v_to_u=False,
                neutral_tone_with_five=True,
            )
            logging.info("Success loading G2PWModel")

        return self.pinyinPlus

    def release_bert(self, bert_model_name):
        if bert_model_name in self.bert_models:
            _, _, count = self.bert_models[bert_model_name]
            count -= 1
            if count == 0:
                # 当引用计数为0时,删除模型并释放其资源
                del self.bert_models[bert_model_name]
                gc.collect()
                torch.cuda.empty_cache()
                logging.info(f"BERT model {bert_model_name} has been released.")
            else:
                tokenizer, model = self.bert_models[bert_model_name][:2]
                self.bert_models[bert_model_name] = (tokenizer, model, count)

    def load_ssl(self, max_retries=3):
        """GPT-SoVITS"""
        if self.ssl_model is None:
            retries = 0
            model_path = self.model_path["CHINESE_HUBERT_BASE"]
            while retries < max_retries:
                logging.info(f"Loading CHINESE_HUBERT_BASE: {model_path}")
                try:
                    from gpt_sovits.feature_extractor.cnhubert import CNHubert
                    self.ssl_model = {}
                    model_path = self.model_path.get("CHINESE_HUBERT_BASE")

                    self.ssl_model["model"] = CNHubert(model_path)
                    self.ssl_model["model"].eval()

                    if config.gpt_sovits_config.is_half:
                        self.ssl_model["model"] = self.ssl_model["model"].half()

                    self.ssl_model["model"] = self.ssl_model["model"].to(self.device)
                    self.ssl_model["reference_count"] = 1
                    logging.info(f"Success loading: {model_path}")
                    break
                except Exception as e:
                    logging.error(f"Failed loading {model_path}. {e}")
                    self._download_model("CHINESE_HUBERT_BASE")
                    retries += 1
            if retries == max_retries:
                logging.error(f"Failed to load {model_path} after {max_retries} retries.")
        else:
            self.ssl_model["reference_count"] += 1

    def get_ssl_model(self):
        if self.ssl_model is None:
            self.load_ssl()

        return self.ssl_model.get("model")

    def release_ssl_model(self):
        if self.ssl_model is not None:
            self.ssl_model["reference_count"] -= 1
            if self.ssl_model["reference_count"] <= 0:
                del self.ssl_model
                self.ssl_model = None
                gc.collect()
                torch.cuda.empty_cache()
                logging.info(f"SSL model has been released.")

    def is_model_loaded(self, bert_model_name):
        return bert_model_name in self.bert_models

    def reference_count(self, bert_model_name):
        return self.bert_models[bert_model_name][2] if bert_model_name in self.bert_models else 0