Spaces:
Running
Running
File size: 18,690 Bytes
960cd20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
"""
放置公用模型
"""
import gc
import logging
import os
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM, BertTokenizer, MegatronBertModel
from contants import config
from utils.download import download_file
from bert_vits2.text.chinese_bert import get_bert_feature as zh_bert
from bert_vits2.text.english_bert_mock import get_bert_feature as en_bert
from bert_vits2.text.japanese_bert import get_bert_feature as ja_bert
from bert_vits2.text.japanese_bert_v111 import get_bert_feature as ja_bert_v111
from bert_vits2.text.japanese_bert_v200 import get_bert_feature as ja_bert_v200
from bert_vits2.text.english_bert_mock_v200 import get_bert_feature as en_bert_v200
from bert_vits2.text.chinese_bert_extra import get_bert_feature as zh_bert_extra
from bert_vits2.text.japanese_bert_extra import get_bert_feature as ja_bert_extra
class ModelHandler:
def __init__(self, device=config.system.device):
self.DOWNLOAD_PATHS = {
"CHINESE_ROBERTA_WWM_EXT_LARGE": [
"https://huggingface.co/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin",
"https://hf-mirror.com/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin",
],
"BERT_BASE_JAPANESE_V3": [
"https://huggingface.co/cl-tohoku/bert-base-japanese-v3/resolve/main/pytorch_model.bin",
"https://hf-mirror.com/cl-tohoku/bert-base-japanese-v3/resolve/main/pytorch_model.bin",
],
"BERT_LARGE_JAPANESE_V2": [
"https://huggingface.co/cl-tohoku/bert-large-japanese-v2/resolve/main/pytorch_model.bin",
"https://hf-mirror.com/cl-tohoku/bert-large-japanese-v2/resolve/main/pytorch_model.bin",
],
"DEBERTA_V2_LARGE_JAPANESE": [
"https://huggingface.co/ku-nlp/deberta-v2-large-japanese/resolve/main/pytorch_model.bin",
"https://hf-mirror.com/ku-nlp/deberta-v2-large-japanese/resolve/main/pytorch_model.bin",
],
"DEBERTA_V3_LARGE": [
"https://huggingface.co/microsoft/deberta-v3-large/resolve/main/pytorch_model.bin",
"https://hf-mirror.com/microsoft/deberta-v3-large/resolve/main/pytorch_model.bin",
],
"SPM": [
"https://huggingface.co/microsoft/deberta-v3-large/resolve/main/spm.model",
"https://hf-mirror.com/microsoft/deberta-v3-large/resolve/main/spm.model",
],
"DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM": [
"https://huggingface.co/ku-nlp/deberta-v2-large-japanese-char-wwm/resolve/main/pytorch_model.bin",
"https://hf-mirror.com/ku-nlp/deberta-v2-large-japanese-char-wwm/resolve/main/pytorch_model.bin",
],
"WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM": [
"https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim/resolve/main/pytorch_model.bin",
"https://hf-mirror.com/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim/resolve/main/pytorch_model.bin",
],
"CLAP_HTSAT_FUSED": [
"https://huggingface.co/laion/clap-htsat-fused/resolve/main/pytorch_model.bin?download=true",
"https://hf-mirror.com/laion/clap-htsat-fused/resolve/main/pytorch_model.bin?download=true",
],
"Erlangshen_MegatronBert_1.3B_Chinese": [
"https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese/resolve/main/pytorch_model.bin",
"https://hf-mirror.com/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese/resolve/main/pytorch_model.bin",
],
"G2PWModel": [
# "https://storage.googleapis.com/esun-ai/g2pW/G2PWModel-v2-onnx.zip",
"https://huggingface.co/ADT109119/G2PWModel-v2-onnx/resolve/main/g2pw.onnx",
"https://hf-mirror.com/ADT109119/G2PWModel-v2-onnx/resolve/main/g2pw.onnx",
],
"CHINESE_HUBERT_BASE": [
"https://huggingface.co/TencentGameMate/chinese-hubert-base/resolve/main/pytorch_model.bin",
"https://hf-mirror.com/TencentGameMate/chinese-hubert-base/resolve/main/pytorch_model.bin",
]
}
self.SHA256 = {
"CHINESE_ROBERTA_WWM_EXT_LARGE": "4ac62d49144d770c5ca9a5d1d3039c4995665a080febe63198189857c6bd11cd",
"BERT_BASE_JAPANESE_V3": "e172862e0674054d65e0ba40d67df2a4687982f589db44aa27091c386e5450a4",
"BERT_LARGE_JAPANESE_V2": "50212d714f79af45d3e47205faa356d0e5030e1c9a37138eadda544180f9e7c9",
"DEBERTA_V2_LARGE_JAPANESE": "a6c15feac0dea77ab8835c70e1befa4cf4c2137862c6fb2443b1553f70840047",
"DEBERTA_V3_LARGE": "dd5b5d93e2db101aaf281df0ea1216c07ad73620ff59c5b42dccac4bf2eef5b5",
"SPM": "c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd",
"DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM": "bf0dab8ad87bd7c22e85ec71e04f2240804fda6d33196157d6b5923af6ea1201",
"WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM": "176d9d1ce29a8bddbab44068b9c1c194c51624c7f1812905e01355da58b18816",
"CLAP_HTSAT_FUSED": "1ed5d0215d887551ddd0a49ce7311b21429ebdf1e6a129d4e68f743357225253",
"Erlangshen_MegatronBert_1.3B_Chinese": "3456bb8f2c7157985688a4cb5cecdb9e229cb1dcf785b01545c611462ffe3579",
# "G2PWModel": "bb40c8c7b5baa755b2acd317c6bc5a65e4af7b80c40a569247fbd76989299999",
"G2PWModel": "",
"CHINESE_HUBERT_BASE": "2fefccd26c2794a583b80f6f7210c721873cb7ebae2c1cde3baf9b27855e24d8",
}
self.model_path = {
"CHINESE_ROBERTA_WWM_EXT_LARGE": os.path.join(config.abs_path, config.system.data_path,
config.model_config.chinese_roberta_wwm_ext_large),
"BERT_BASE_JAPANESE_V3": os.path.join(config.abs_path, config.system.data_path,
config.model_config.bert_base_japanese_v3),
"BERT_LARGE_JAPANESE_V2": os.path.join(config.abs_path, config.system.data_path,
config.model_config.bert_large_japanese_v2),
"DEBERTA_V2_LARGE_JAPANESE": os.path.join(config.abs_path, config.system.data_path,
config.model_config.deberta_v2_large_japanese),
"DEBERTA_V3_LARGE": os.path.join(config.abs_path, config.system.data_path,
config.model_config.deberta_v3_large),
"DEBERTA_V2_LARGE_JAPANESE_CHAR_WWM": os.path.join(config.abs_path, config.system.data_path,
config.model_config.deberta_v2_large_japanese_char_wwm),
"WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM": os.path.join(config.abs_path, config.system.data_path,
config.model_config.wav2vec2_large_robust_12_ft_emotion_msp_dim),
"CLAP_HTSAT_FUSED": os.path.join(config.abs_path, config.system.data_path,
config.model_config.clap_htsat_fused),
"Erlangshen_MegatronBert_1.3B_Chinese": os.path.join(config.abs_path, config.system.data_path,
config.model_config.erlangshen_MegatronBert_1_3B_Chinese),
"G2PWModel": os.path.join(config.abs_path, config.system.data_path, config.model_config.g2pw_model),
"CHINESE_HUBERT_BASE": os.path.join(config.abs_path, config.system.data_path,
config.model_config.chinese_hubert_base),
}
self.lang_bert_func_map = {"zh": zh_bert, "en": en_bert, "ja": ja_bert, "ja_v111": ja_bert_v111,
"ja_v200": ja_bert_v200, "en_v200": en_bert_v200, "zh_extra": zh_bert_extra,
"ja_extra": ja_bert_extra}
self.bert_models = {} # Value: (tokenizer, model, reference_count)
self.emotion = None
self.clap = None
self.pinyinPlus = None
self.device = device
self.ssl_model = None
if config.bert_vits2_config.torch_data_type.lower() in ["float16", "fp16"]:
self.torch_dtype = torch.float16
else:
self.torch_dtype = None
@property
def emotion_model(self):
return self.emotion["model"]
@property
def emotion_processor(self):
return self.emotion["processor"]
@property
def clap_model(self):
return self.clap["model"]
@property
def clap_processor(self):
return self.clap["processor"]
def _download_model(self, model_name, target_path=None):
urls = self.DOWNLOAD_PATHS[model_name]
if target_path is None:
target_path = os.path.join(self.model_path[model_name], "pytorch_model.bin")
expected_sha256 = self.SHA256[model_name]
success, message = download_file(urls, target_path, expected_sha256=expected_sha256)
if not success:
logging.error(f"Failed to download {model_name}: {message}")
else:
logging.info(f"{message}")
def load_bert(self, bert_model_name, max_retries=3):
if bert_model_name not in self.bert_models:
retries = 0
model_path = ""
while retries < max_retries:
model_path = self.model_path[bert_model_name]
logging.info(f"Loading BERT model: {model_path}")
try:
if bert_model_name == "Erlangshen_MegatronBert_1.3B_Chinese":
tokenizer = BertTokenizer.from_pretrained(model_path, torch_dtype=self.torch_dtype)
model = MegatronBertModel.from_pretrained(model_path, torch_dtype=self.torch_dtype).to(
self.device)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, torch_dtype=self.torch_dtype)
model = AutoModelForMaskedLM.from_pretrained(model_path, torch_dtype=self.torch_dtype).to(
self.device)
self.bert_models[bert_model_name] = (tokenizer, model, 1) # 初始化引用计数为1
logging.info(f"Success loading: {model_path}")
break
except Exception as e:
logging.error(f"Failed loading {model_path}. {e}")
logging.info(f"Trying to download.")
if bert_model_name == "DEBERTA_V3_LARGE" and not os.path.exists(
os.path.join(model_path, "spm.model")):
self._download_model("SPM", os.path.join(model_path, "spm.model"))
self._download_model(bert_model_name)
retries += 1
if retries == max_retries:
logging.error(f"Failed to load {model_path} after {max_retries} retries.")
else:
tokenizer, model, count = self.bert_models[bert_model_name]
self.bert_models[bert_model_name] = (tokenizer, model, count + 1)
def load_emotion(self, max_retries=3):
"""Bert-VITS2 v2.1 EmotionModel"""
if self.emotion is None:
from transformers import Wav2Vec2Processor
from bert_vits2.get_emo import EmotionModel
retries = 0
model_path = self.model_path["WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM"]
while retries < max_retries:
logging.info(f"Loading WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM: {model_path}")
try:
self.emotion = {}
self.emotion["model"] = EmotionModel.from_pretrained(model_path).to(self.device)
self.emotion["processor"] = Wav2Vec2Processor.from_pretrained(model_path)
self.emotion["reference_count"] = 1
logging.info(f"Success loading: {model_path}")
break
except Exception as e:
logging.error(f"Failed loading {model_path}. {e}")
self._download_model("WAV2VEC2_LARGE_ROBUST_12_FT_EMOTION_MSP_DIM")
retries += 1
if retries == max_retries:
logging.error(f"Failed to load {model_path} after {max_retries} retries.")
else:
self.emotion["reference_count"] += 1
def release_emotion(self):
if self.emotion is not None:
self.emotion["reference_count"] -= 1
if self.emotion["reference_count"] <= 0:
del self.emotion
self.emotion = None
gc.collect()
torch.cuda.empty_cache()
logging.info(f"Emotion model has been released.")
def load_clap(self, max_retries=3):
"""Bert-VITS2 v2.2 ClapModel"""
if self.clap is None:
from transformers import ClapModel, ClapProcessor
retries = 0
model_path = self.model_path["CLAP_HTSAT_FUSED"]
while retries < max_retries:
logging.info(f"Loading CLAP_HTSAT_FUSED: {model_path}")
try:
self.clap = {}
self.clap["model"] = ClapModel.from_pretrained(model_path, torch_dtype=self.torch_dtype).to(
self.device)
self.clap["processor"] = ClapProcessor.from_pretrained(model_path, torch_dtype=self.torch_dtype)
self.clap["reference_count"] = 1
logging.info(f"Success loading: {model_path}")
break
except Exception as e:
logging.error(f"Failed loading {model_path}. {e}")
self._download_model("CLAP_HTSAT_FUSED")
retries += 1
if retries == max_retries:
logging.error(f"Failed to load {model_path} after {max_retries} retries.")
else:
self.clap["reference_count"] += 1
def release_clap(self):
if self.clap is not None:
self.clap["reference_count"] -= 1
if self.clap["reference_count"] <= 0:
del self.clap
self.clap = None
gc.collect()
torch.cuda.empty_cache()
logging.info(f"Clap model has been released.")
def get_bert_model(self, bert_model_name):
if bert_model_name not in self.bert_models:
self.load_bert(bert_model_name)
tokenizer, model, _ = self.bert_models[bert_model_name]
return tokenizer, model
def get_bert_feature(self, norm_text, word2ph, language, bert_model_name, style_text=None, style_weight=0.7):
tokenizer, model = self.get_bert_model(bert_model_name)
bert_feature = self.lang_bert_func_map[language](norm_text, word2ph, tokenizer, model, self.device,
style_text=style_text, style_weight=style_weight)
return bert_feature
def get_pinyinPlus(self):
if self.pinyinPlus is None:
from bert_vits2.g2pW.pypinyin_G2pW_bv2 import G2PWPinyin
logging.info(f"Loading G2PWModel: {self.model_path['G2PWModel']}")
self.pinyinPlus = G2PWPinyin(
model_dir=self.model_path["G2PWModel"],
model_source=self.model_path["Erlangshen_MegatronBert_1.3B_Chinese"],
v_to_u=False,
neutral_tone_with_five=True,
)
logging.info("Success loading G2PWModel")
return self.pinyinPlus
def release_bert(self, bert_model_name):
if bert_model_name in self.bert_models:
_, _, count = self.bert_models[bert_model_name]
count -= 1
if count == 0:
# 当引用计数为0时,删除模型并释放其资源
del self.bert_models[bert_model_name]
gc.collect()
torch.cuda.empty_cache()
logging.info(f"BERT model {bert_model_name} has been released.")
else:
tokenizer, model = self.bert_models[bert_model_name][:2]
self.bert_models[bert_model_name] = (tokenizer, model, count)
def load_ssl(self, max_retries=3):
"""GPT-SoVITS"""
if self.ssl_model is None:
retries = 0
model_path = self.model_path["CHINESE_HUBERT_BASE"]
while retries < max_retries:
logging.info(f"Loading CHINESE_HUBERT_BASE: {model_path}")
try:
from gpt_sovits.feature_extractor.cnhubert import CNHubert
self.ssl_model = {}
model_path = self.model_path.get("CHINESE_HUBERT_BASE")
self.ssl_model["model"] = CNHubert(model_path)
self.ssl_model["model"].eval()
if config.gpt_sovits_config.is_half:
self.ssl_model["model"] = self.ssl_model["model"].half()
self.ssl_model["model"] = self.ssl_model["model"].to(self.device)
self.ssl_model["reference_count"] = 1
logging.info(f"Success loading: {model_path}")
break
except Exception as e:
logging.error(f"Failed loading {model_path}. {e}")
self._download_model("CHINESE_HUBERT_BASE")
retries += 1
if retries == max_retries:
logging.error(f"Failed to load {model_path} after {max_retries} retries.")
else:
self.ssl_model["reference_count"] += 1
def get_ssl_model(self):
if self.ssl_model is None:
self.load_ssl()
return self.ssl_model.get("model")
def release_ssl_model(self):
if self.ssl_model is not None:
self.ssl_model["reference_count"] -= 1
if self.ssl_model["reference_count"] <= 0:
del self.ssl_model
self.ssl_model = None
gc.collect()
torch.cuda.empty_cache()
logging.info(f"SSL model has been released.")
def is_model_loaded(self, bert_model_name):
return bert_model_name in self.bert_models
def reference_count(self, bert_model_name):
return self.bert_models[bert_model_name][2] if bert_model_name in self.bert_models else 0
|