Spaces:
Running
Running
import torch | |
import logging | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
from transformers import ( | |
Wav2Vec2FeatureExtractor, | |
HubertModel, | |
) | |
import torch.nn as nn | |
class CNHubert(nn.Module): | |
def __init__(self, cnhubert_base_path): | |
super().__init__() | |
self.model = HubertModel.from_pretrained(cnhubert_base_path) | |
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
cnhubert_base_path | |
) | |
def forward(self, x): | |
input_values = self.feature_extractor( | |
x, return_tensors="pt", sampling_rate=16000 | |
).input_values.to(x.device) | |
feats = self.model(input_values)["last_hidden_state"] | |
return feats | |
def get_content(hmodel, wav_16k_tensor): | |
with torch.no_grad(): | |
feats = hmodel(wav_16k_tensor) | |
return feats.transpose(1, 2) | |