Spaces:
Running
Running
from gpt_sovits.text import chinese, japanese, cleaned_text_to_sequence, symbols, english | |
language_module_map = {"zh": chinese, "ja": japanese, "en": english} | |
special = [ | |
# ("%", "zh", "SP"), | |
("¥", "zh", "SP2"), | |
("^", "zh", "SP3"), | |
# ('@', 'zh', "SP4")#不搞鬼畜了,和第二版保持一致吧 | |
] | |
def clean_text(text, language): | |
if(language not in language_module_map): | |
language="en" | |
text=" " | |
for special_s, special_l, target_symbol in special: | |
if special_s in text and language == special_l: | |
return clean_special(text, language, special_s, target_symbol) | |
language_module = language_module_map[language] | |
norm_text = language_module.text_normalize(text) | |
if language == "zh": | |
phones, word2ph = language_module.g2p(norm_text) | |
assert len(phones) == sum(word2ph) | |
assert len(norm_text) == len(word2ph) | |
else: | |
phones = language_module.g2p(norm_text) | |
word2ph = None | |
for ph in phones: | |
assert ph in symbols | |
return phones, word2ph, norm_text | |
def clean_special(text, language, special_s, target_symbol): | |
""" | |
特殊静音段sp符号处理 | |
""" | |
text = text.replace(special_s, ",") | |
language_module = language_module_map[language] | |
norm_text = language_module.text_normalize(text) | |
phones = language_module.g2p(norm_text) | |
new_ph = [] | |
for ph in phones[0]: | |
assert ph in symbols | |
if ph == ",": | |
new_ph.append(target_symbol) | |
else: | |
new_ph.append(ph) | |
return new_ph, phones[1], norm_text | |
def text_to_sequence(text, language): | |
phones = clean_text(text) | |
return cleaned_text_to_sequence(phones) | |
if __name__ == "__main__": | |
print(clean_text("你好%啊啊啊额、还是到付红四方。", "zh")) | |