# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py from typing import Optional from typing import Tuple import torch from torch import Tensor from torch.nn import Linear from torch.nn import Module from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.init import xavier_uniform_ from torch.nn.modules.linear import NonDynamicallyQuantizableLinear from torch.nn.parameter import Parameter from torch.nn import functional as F from gpt_sovits.AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched class MultiheadAttention(Module): __constants__ = ["batch_first"] bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__( self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, linear1_cls=Linear, linear2_cls=Linear, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.batch_first = batch_first self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" if add_bias_kv: self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) else: self.bias_k = self.bias_v = None if linear1_cls == Linear: if not self._qkv_same_embed_dim: self.q_proj_weight = Parameter( torch.empty((embed_dim, embed_dim), **factory_kwargs) ) self.k_proj_weight = Parameter( torch.empty((embed_dim, self.kdim), **factory_kwargs) ) self.v_proj_weight = Parameter( torch.empty((embed_dim, self.vdim), **factory_kwargs) ) self.register_parameter("in_proj_weight", None) else: self.in_proj_weight = Parameter( torch.empty((3 * embed_dim, embed_dim), **factory_kwargs) ) self.register_parameter("q_proj_weight", None) self.register_parameter("k_proj_weight", None) self.register_parameter("v_proj_weight", None) if bias: self.in_proj_bias = Parameter( torch.empty(3 * embed_dim, **factory_kwargs) ) else: self.register_parameter("in_proj_bias", None) self.out_proj = NonDynamicallyQuantizableLinear( embed_dim, embed_dim, bias=bias, **factory_kwargs ) self._reset_parameters() else: if not self._qkv_same_embed_dim: raise NotImplementedError else: self.in_proj_linear = linear1_cls( embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs ) self.in_proj_weight = self.in_proj_linear.weight self.register_parameter("q_proj_weight", None) self.register_parameter("k_proj_weight", None) self.register_parameter("v_proj_weight", None) if bias: self.in_proj_bias = self.in_proj_linear.bias else: self.register_parameter("in_proj_bias", None) self.out_proj = linear2_cls( embed_dim, embed_dim, bias=bias, **factory_kwargs ) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) self.add_zero_attn = add_zero_attn def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.0) constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if "_qkv_same_embed_dim" not in state: state["_qkv_same_embed_dim"] = True super(MultiheadAttention, self).__setstate__(state) def forward( self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, average_attn_weights: bool = True, cache=None, ) -> Tuple[Tensor, Optional[Tensor]]: any_nested = query.is_nested or key.is_nested or value.is_nested query = key = value = query.transpose(1, 0) attn_output = multi_head_attention_forward_patched( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, average_attn_weights=average_attn_weights, cache=cache, ) return attn_output.transpose(1, 0)