import torch from torch import no_grad, LongTensor import utils from utils import get_hparams_from_file, lang_dict from vits import commons from vits.mel_processing import spectrogram_torch from vits.text import text_to_sequence from vits.models import SynthesizerTrn class VITS: def __init__(self, model_path, config, device="cpu", **kwargs): self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0) self.n_symbols = len(getattr(self.hps_ms, 'symbols', [])) self.speakers = getattr(self.hps_ms, 'speakers', ['0']) if not isinstance(self.speakers, list): self.speakers = [item[0] for item in sorted(list(self.speakers.items()), key=lambda x: x[1])] self.bert_embedding = getattr(self.hps_ms.data, 'bert_embedding', getattr(self.hps_ms.model, 'bert_embedding', False)) self.hps_ms.model.bert_embedding = self.bert_embedding self.text_cleaners = getattr(self.hps_ms.data, 'text_cleaners', [None])[0] self.sampling_rate = self.hps_ms.data.sampling_rate self.device = device self.model_path = model_path # load checkpoint # self.load_model() self.lang = lang_dict.get(self.text_cleaners, ["unknown"]) def load_model(self): self.net_g_ms = SynthesizerTrn( self.n_symbols, self.hps_ms.data.filter_length // 2 + 1, self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, n_speakers=self.n_speakers, **self.hps_ms.model) _ = self.net_g_ms.eval() utils.load_checkpoint(self.model_path, self.net_g_ms) self.net_g_ms.to(self.device) def release_model(self): del self.net_g_ms def get_cleaned_text(self, text, hps, cleaned=False): if cleaned: text_norm = text_to_sequence(text, hps.symbols, []) else: if self.bert_embedding: text_norm, char_embed = text_to_sequence(text, hps.symbols, hps.data.text_cleaners, bert_embedding=self.bert_embedding) text_norm = LongTensor(text_norm) return text_norm, char_embed else: text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = LongTensor(text_norm) return text_norm def infer(self, text, id, noise, noisew, length, cleaned=False, **kwargs): char_embeds = None if self.bert_embedding: stn_tst, char_embeds = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned) else: stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned) id = LongTensor([id]) with no_grad(): x_tst = stn_tst.unsqueeze(0).to(self.device) x_tst_lengths = LongTensor([stn_tst.size(0)]).to(self.device) x_tst_prosody = torch.FloatTensor(char_embeds).unsqueeze(0).to( self.device) if self.bert_embedding else None id = id.to(self.device) audio = self.net_g_ms.infer(x=x_tst, x_lengths=x_tst_lengths, sid=id, noise_scale=noise, noise_scale_w=noisew, length_scale=length, bert=x_tst_prosody)[0][0, 0].data.float().cpu().numpy() torch.cuda.empty_cache() return audio def voice_conversion(self, audio_path, original_id, target_id): audio = utils.load_audio_to_torch( audio_path, self.sampling_rate) y = audio.unsqueeze(0) spec = spectrogram_torch(y, self.hps_ms.data.filter_length, self.sampling_rate, self.hps_ms.data.hop_length, self.hps_ms.data.win_length, center=False) spec_lengths = LongTensor([spec.size(-1)]) sid_src = LongTensor([original_id]) with no_grad(): sid_tgt = LongTensor([target_id]) audio = self.net_g_ms.voice_conversion(spec.to(self.device), spec_lengths.to(self.device), sid_src=sid_src.to(self.device), sid_tgt=sid_tgt.to(self.device))[0][0, 0].data.cpu().float().numpy() torch.cuda.empty_cache() return audio