|
|
|
|
|
|
|
|
|
import dash |
|
from dash import dcc, html, Output, Input |
|
import plotly.express as px |
|
import dash_callback_chain |
|
import yaml |
|
import polars as pl |
|
import os |
|
pl.enable_string_cache(False) |
|
|
|
|
|
config_fig = { |
|
'toImageButtonOptions': { |
|
'format': 'svg', |
|
'filename': 'custom_image', |
|
'height': 600, |
|
'width': 700, |
|
'scale': 1, |
|
} |
|
} |
|
from adlfs import AzureBlobFileSystem |
|
mountpount=os.environ['AZURE_MOUNT_POINT'], |
|
accountkey=os.environ['AZURE_STORAGE_ACCESS_KEY'], |
|
accountname=os.environ['AZURE_STORAGE_ACCOUNT'], |
|
|
|
storage_options={'account_name': ACCOUNT_NAME, 'anon': False} |
|
df = pl.read_parquet(path="liu/filename.parquet",storage_options=storage_options) |
|
|
|
|
|
|
|
|
|
|
|
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] |
|
app = dash.Dash(__name__, external_stylesheets=external_stylesheets, requests_pathname_prefix='/dashboard1/') |
|
|
|
min_value = df[col_features].min() |
|
max_value = df[col_features].max() |
|
|
|
min_value_2 = df[col_counts].min() |
|
min_value_2 = round(min_value_2) |
|
max_value_2 = df[col_counts].max() |
|
max_value_2 = round(max_value_2) |
|
|
|
min_value_3 = df[col_mt].min() |
|
min_value_3 = round(min_value_3, 1) |
|
max_value_3 = df[col_mt].max() |
|
max_value_3 = round(max_value_3, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tab1_content = html.Div([ |
|
dcc.Dropdown(id='dpdn2', value=conditions, multi=True, |
|
options=conditions), |
|
html.Label("N Genes by Counts"), |
|
dcc.RangeSlider( |
|
id='range-slider-1', |
|
step=250, |
|
value=[min_value, max_value], |
|
marks={i: str(i) for i in range(min_value, max_value + 1, 250)}, |
|
), |
|
dcc.Input(id='min-slider-1', type='number', value=min_value, debounce=True), |
|
dcc.Input(id='max-slider-1', type='number', value=max_value, debounce=True), |
|
html.Label("Total Counts"), |
|
dcc.RangeSlider( |
|
id='range-slider-2', |
|
step=7500, |
|
value=[min_value_2, max_value_2], |
|
marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)}, |
|
), |
|
dcc.Input(id='min-slider-2', type='number', value=min_value_2, debounce=True), |
|
dcc.Input(id='max-slider-2', type='number', value=max_value_2, debounce=True), |
|
html.Label("Percent Mitochondrial Genes"), |
|
dcc.RangeSlider( |
|
id='range-slider-3', |
|
step=0.1, |
|
min=0, |
|
max=1, |
|
value=[min_value_3, max_value_3], |
|
), |
|
dcc.Input(id='min-slider-3', type='number', value=min_value_3, debounce=True), |
|
dcc.Input(id='max-slider-3', type='number', value=max_value_3, debounce=True), |
|
html.Div([ |
|
dcc.Graph(id='pie-graph', figure={}, className='four columns',config=config_fig), |
|
dcc.Graph(id='my-graph', figure={}, clickData=None, hoverData=None, |
|
className='four columns',config=config_fig |
|
), |
|
dcc.Graph(id='scatter-plot', figure={}, className='four columns',config=config_fig) |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-2', figure={}, className='four columns',config=config_fig) |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-3', figure={}, className='four columns',config=config_fig) |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-4', figure={}, className='four columns',config=config_fig) |
|
]), |
|
]) |
|
|
|
|
|
tab2_content = html.Div([ |
|
html.Div([ |
|
html.Label("S-cycle genes"), |
|
dcc.Dropdown(id='dpdn3', value="Cdc45", multi=False, |
|
options=[ |
|
"Cdc45", |
|
"Uhrf1", |
|
"Mcm2", |
|
"Slbp", |
|
"Mcm5", |
|
"Pola1", |
|
"Gmnn", |
|
"Cdc6", |
|
"Rrm2", |
|
"Atad2", |
|
"Dscc1", |
|
"Mcm4", |
|
"Chaf1b", |
|
"Rfc2", |
|
"Msh2", |
|
"Fen1", |
|
"Hells", |
|
"Prim1", |
|
"Tyms", |
|
"Mcm6", |
|
"Wdr76", |
|
"Rad51", |
|
"Pcna", |
|
"Ccne2", |
|
"Casp8ap2", |
|
"Usp1", |
|
"Nasp", |
|
"Rpa2", |
|
"Ung", |
|
"Rad51ap1", |
|
"Blm", |
|
"Pold3", |
|
"Rrm1", |
|
"Cenpu", |
|
"Gins2", |
|
"Tipin", |
|
"Brip1", |
|
"Dtl", |
|
"Exo1", |
|
"Ubr7", |
|
"Clspn", |
|
"E2f8", |
|
"Cdca7" |
|
]), |
|
html.Label("G2M-cycle genes"), |
|
dcc.Dropdown(id='dpdn4', value="Top2a", multi=False, |
|
options=[ |
|
"Ube2c", |
|
"Lbr", |
|
"Ctcf", |
|
"Cdc20", |
|
"Cbx5", |
|
"Kif11", |
|
"Anp32e", |
|
"Birc5", |
|
"Cdk1", |
|
"Tmpo", |
|
"Hmmr", |
|
"Pimreg", |
|
"Aurkb", |
|
"Top2a", |
|
"Gtse1", |
|
"Rangap1", |
|
"Cdca3", |
|
"Ndc80", |
|
"Kif20b", |
|
"Cenpf", |
|
"Nek2", |
|
"Nuf2", |
|
"Nusap1", |
|
"Bub1", |
|
"Tpx2", |
|
"Aurka", |
|
"Ect2", |
|
"Cks1b", |
|
"Kif2c", |
|
"Cdca8", |
|
"Cenpa", |
|
"Mki67", |
|
"Ccnb2", |
|
"Kif23", |
|
"Smc4", |
|
"G2e3", |
|
"Tubb4b", |
|
"Anln", |
|
"Tacc3", |
|
"Dlgap5", |
|
"Ckap2", |
|
"Ncapd2", |
|
"Ttk", |
|
"Ckap5", |
|
"Cdc25c", |
|
"Hjurp", |
|
"Cenpe", |
|
"Ckap2l", |
|
"Cdca2", |
|
"Hmgb2", |
|
"Cks2", |
|
"Psrc1", |
|
"Gas2l3" |
|
]), |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-5', figure={}, className='three columns',config=config_fig) |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-6', figure={}, className='three columns',config=config_fig) |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-7', figure={}, className='three columns',config=config_fig) |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-8', figure={}, className='three columns',config=config_fig) |
|
]), |
|
]) |
|
|
|
|
|
tab3_content = html.Div([ |
|
html.Div([ |
|
html.Label("UMAP condition 1"), |
|
dcc.Dropdown(id='dpdn5', value="total_counts", multi=False, |
|
options=df.columns), |
|
html.Label("UMAP condition 2"), |
|
dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False, |
|
options=df.columns), |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-9', figure={}, className='four columns',config=config_fig) |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-10', figure={}, className='four columns',config=config_fig) |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='scatter-plot-11', figure={}, className='four columns',config=config_fig) |
|
]), |
|
html.Div([ |
|
dcc.Graph(id='my-graph2', figure={}, clickData=None, hoverData=None, |
|
className='four columns',config=config_fig |
|
) |
|
]), |
|
]) |
|
|
|
|
|
app.layout = html.Div([ |
|
dcc.Tabs(id='tabs', style= {'width': 400, |
|
'font-size': '100%', |
|
'height': 50}, value='tab1',children=[ |
|
dcc.Tab(label='QC', value='tab1', children=tab1_content), |
|
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content), |
|
dcc.Tab(label='Custom', value='tab3', children=tab3_content), |
|
]), |
|
]) |
|
|
|
|
|
@app.callback( |
|
Output("min-slider-1", "value"), |
|
Output("max-slider-1", "value"), |
|
Output("min-slider-2", "value"), |
|
Output("max-slider-2", "value"), |
|
Output("min-slider-3", "value"), |
|
Output("max-slider-3", "value"), |
|
Input("min-slider-1", "value"), |
|
Input("max-slider-1", "value"), |
|
Input("min-slider-2", "value"), |
|
Input("max-slider-2", "value"), |
|
Input("min-slider-3", "value"), |
|
Input("max-slider-3", "value"), |
|
) |
|
def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3): |
|
return min_1, max_1, min_2, max_2, min_3, max_3 |
|
|
|
@app.callback( |
|
Output('range-slider-1', 'value'), |
|
Output('range-slider-2', 'value'), |
|
Output('range-slider-3', 'value'), |
|
Input('min-slider-1', 'value'), |
|
Input('max-slider-1', 'value'), |
|
Input('min-slider-2', 'value'), |
|
Input('max-slider-2', 'value'), |
|
Input('min-slider-3', 'value'), |
|
Input('max-slider-3', 'value'), |
|
) |
|
def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3): |
|
return [min_1, max_1], [min_2, max_2], [min_3, max_3] |
|
|
|
@app.callback( |
|
Output(component_id='my-graph', component_property='figure'), |
|
Output(component_id='pie-graph', component_property='figure'), |
|
Output(component_id='scatter-plot', component_property='figure'), |
|
Output(component_id='scatter-plot-2', component_property='figure'), |
|
Output(component_id='scatter-plot-3', component_property='figure'), |
|
Output(component_id='scatter-plot-4', component_property='figure'), |
|
Output(component_id='scatter-plot-5', component_property='figure'), |
|
Output(component_id='scatter-plot-6', component_property='figure'), |
|
Output(component_id='scatter-plot-7', component_property='figure'), |
|
Output(component_id='scatter-plot-8', component_property='figure'), |
|
Output(component_id='scatter-plot-9', component_property='figure'), |
|
Output(component_id='scatter-plot-10', component_property='figure'), |
|
Output(component_id='scatter-plot-11', component_property='figure'), |
|
Output(component_id='my-graph2', component_property='figure'), |
|
Input(component_id='dpdn2', component_property='value'), |
|
Input(component_id='dpdn3', component_property='value'), |
|
Input(component_id='dpdn4', component_property='value'), |
|
Input(component_id='dpdn5', component_property='value'), |
|
Input(component_id='dpdn6', component_property='value'), |
|
Input(component_id='range-slider-1', component_property='value'), |
|
Input(component_id='range-slider-2', component_property='value'), |
|
Input(component_id='range-slider-3', component_property='value') |
|
) |
|
|
|
def update_graph_and_pie_chart(batch_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, range_value_1, range_value_2, range_value_3): |
|
dff = df.filter( |
|
(pl.col('batch').cast(str).is_in(batch_chosen)) & |
|
(pl.col(col_features) >= range_value_1[0]) & |
|
(pl.col(col_features) <= range_value_1[1]) & |
|
(pl.col(col_counts) >= range_value_2[0]) & |
|
(pl.col(col_counts) <= range_value_2[1]) & |
|
(pl.col(col_mt) >= range_value_3[0]) & |
|
(pl.col(col_mt) <= range_value_3[1]) |
|
) |
|
|
|
|
|
dff = dff.with_columns(dff['batch'].cast(str)) |
|
dff = dff.with_columns(dff['batch'].cast(pl.Categorical)) |
|
|
|
|
|
fig_violin = px.violin(data_frame=dff, x='batch', y=col_features, box=True, points="all", |
|
color='batch', hover_name='batch',template="seaborn") |
|
|
|
|
|
category_counts = dff.group_by("batch").agg(pl.col("batch").count().alias("count")) |
|
total_count = len(dff) |
|
category_counts = category_counts.with_columns((pl.col("count") / total_count * 100).alias("normalized_count")) |
|
|
|
|
|
labels = category_counts["batch"].to_list() |
|
values = category_counts["normalized_count"].to_list() |
|
|
|
total_cells = total_count |
|
pie_title = f'Percentage of Total Cells: {total_cells}' |
|
|
|
fig_pie = px.pie(names=labels, values=values, title=pie_title,template="seaborn") |
|
|
|
|
|
fig_scatter = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color='batch', |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch',template="seaborn") |
|
|
|
fig_scatter_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt, |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch',template="seaborn") |
|
|
|
fig_scatter_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features, |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch',template="seaborn") |
|
|
|
|
|
fig_scatter_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts, |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch',template="seaborn") |
|
|
|
fig_scatter_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen, |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch', title="S-cycle gene:",template="seaborn") |
|
|
|
fig_scatter_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen, |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch', title="G2M-cycle gene:",template="seaborn") |
|
|
|
fig_scatter_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score", |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch', title="S score:",template="seaborn") |
|
|
|
fig_scatter_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score", |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch', title="G2M score:",template="seaborn") |
|
|
|
fig_scatter_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen, |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch',template="seaborn") |
|
|
|
fig_scatter_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen, |
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, |
|
hover_name='batch',template="seaborn") |
|
|
|
fig_scatter_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color='batch', |
|
|
|
hover_name='batch',template="seaborn") |
|
|
|
fig_violin2 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all", |
|
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn") |
|
|
|
|
|
return fig_violin, fig_pie, fig_scatter, fig_scatter_2, fig_scatter_3, fig_scatter_4, fig_scatter_5, fig_scatter_6, fig_scatter_7, fig_scatter_8, fig_scatter_9, fig_scatter_10, fig_scatter_11, fig_violin2 |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
app.run_server(debug=True, use_reloader=False) |
|
|