|
|
|
|
|
|
|
|
|
import dash
|
|
from dash import dcc, html, Output, Input
|
|
import plotly.express as px
|
|
import dash_callback_chain
|
|
import yaml
|
|
import polars as pl
|
|
pl.enable_string_cache(False)
|
|
|
|
|
|
config_fig = {
|
|
'toImageButtonOptions': {
|
|
'format': 'svg',
|
|
'filename': 'custom_image',
|
|
'height': 600,
|
|
'width': 700,
|
|
'scale': 1,
|
|
}
|
|
}
|
|
|
|
config_path = "./app/azure/config.yaml"
|
|
|
|
|
|
def read_config(filename):
|
|
with open(filename, 'r') as yaml_file:
|
|
config = yaml.safe_load(yaml_file)
|
|
return config
|
|
|
|
config = read_config(config_path)
|
|
path_parquet = config.get("path_parquet")
|
|
conditions = config.get("conditions")
|
|
col_features = config.get("col_features")
|
|
col_counts = config.get("col_counts")
|
|
col_mt = config.get("col_mt")
|
|
|
|
|
|
df = pl.read_parquet(path_parquet)
|
|
|
|
|
|
|
|
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
|
|
app = dash.Dash(__name__, external_stylesheets=external_stylesheets, requests_pathname_prefix='/dashboard1/')
|
|
|
|
min_value = df[col_features].min()
|
|
max_value = df[col_features].max()
|
|
|
|
min_value_2 = df[col_counts].min()
|
|
min_value_2 = round(min_value_2)
|
|
max_value_2 = df[col_counts].max()
|
|
max_value_2 = round(max_value_2)
|
|
|
|
min_value_3 = df[col_mt].min()
|
|
min_value_3 = round(min_value_3, 1)
|
|
max_value_3 = df[col_mt].max()
|
|
max_value_3 = round(max_value_3, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tab1_content = html.Div([
|
|
dcc.Dropdown(id='dpdn2', value=conditions, multi=True,
|
|
options=conditions),
|
|
html.Label("N Genes by Counts"),
|
|
dcc.RangeSlider(
|
|
id='range-slider-1',
|
|
step=250,
|
|
value=[min_value, max_value],
|
|
marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
|
|
),
|
|
dcc.Input(id='min-slider-1', type='number', value=min_value, debounce=True),
|
|
dcc.Input(id='max-slider-1', type='number', value=max_value, debounce=True),
|
|
html.Label("Total Counts"),
|
|
dcc.RangeSlider(
|
|
id='range-slider-2',
|
|
step=7500,
|
|
value=[min_value_2, max_value_2],
|
|
marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
|
|
),
|
|
dcc.Input(id='min-slider-2', type='number', value=min_value_2, debounce=True),
|
|
dcc.Input(id='max-slider-2', type='number', value=max_value_2, debounce=True),
|
|
html.Label("Percent Mitochondrial Genes"),
|
|
dcc.RangeSlider(
|
|
id='range-slider-3',
|
|
step=0.1,
|
|
min=0,
|
|
max=1,
|
|
value=[min_value_3, max_value_3],
|
|
),
|
|
dcc.Input(id='min-slider-3', type='number', value=min_value_3, debounce=True),
|
|
dcc.Input(id='max-slider-3', type='number', value=max_value_3, debounce=True),
|
|
html.Div([
|
|
dcc.Graph(id='pie-graph', figure={}, className='four columns',config=config_fig),
|
|
dcc.Graph(id='my-graph', figure={}, clickData=None, hoverData=None,
|
|
className='four columns',config=config_fig
|
|
),
|
|
dcc.Graph(id='scatter-plot', figure={}, className='four columns',config=config_fig)
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-2', figure={}, className='four columns',config=config_fig)
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-3', figure={}, className='four columns',config=config_fig)
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-4', figure={}, className='four columns',config=config_fig)
|
|
]),
|
|
])
|
|
|
|
|
|
tab2_content = html.Div([
|
|
html.Div([
|
|
html.Label("S-cycle genes"),
|
|
dcc.Dropdown(id='dpdn3', value="Cdc45", multi=False,
|
|
options=[
|
|
"Cdc45",
|
|
"Uhrf1",
|
|
"Mcm2",
|
|
"Slbp",
|
|
"Mcm5",
|
|
"Pola1",
|
|
"Gmnn",
|
|
"Cdc6",
|
|
"Rrm2",
|
|
"Atad2",
|
|
"Dscc1",
|
|
"Mcm4",
|
|
"Chaf1b",
|
|
"Rfc2",
|
|
"Msh2",
|
|
"Fen1",
|
|
"Hells",
|
|
"Prim1",
|
|
"Tyms",
|
|
"Mcm6",
|
|
"Wdr76",
|
|
"Rad51",
|
|
"Pcna",
|
|
"Ccne2",
|
|
"Casp8ap2",
|
|
"Usp1",
|
|
"Nasp",
|
|
"Rpa2",
|
|
"Ung",
|
|
"Rad51ap1",
|
|
"Blm",
|
|
"Pold3",
|
|
"Rrm1",
|
|
"Cenpu",
|
|
"Gins2",
|
|
"Tipin",
|
|
"Brip1",
|
|
"Dtl",
|
|
"Exo1",
|
|
"Ubr7",
|
|
"Clspn",
|
|
"E2f8",
|
|
"Cdca7"
|
|
]),
|
|
html.Label("G2M-cycle genes"),
|
|
dcc.Dropdown(id='dpdn4', value="Top2a", multi=False,
|
|
options=[
|
|
"Ube2c",
|
|
"Lbr",
|
|
"Ctcf",
|
|
"Cdc20",
|
|
"Cbx5",
|
|
"Kif11",
|
|
"Anp32e",
|
|
"Birc5",
|
|
"Cdk1",
|
|
"Tmpo",
|
|
"Hmmr",
|
|
"Pimreg",
|
|
"Aurkb",
|
|
"Top2a",
|
|
"Gtse1",
|
|
"Rangap1",
|
|
"Cdca3",
|
|
"Ndc80",
|
|
"Kif20b",
|
|
"Cenpf",
|
|
"Nek2",
|
|
"Nuf2",
|
|
"Nusap1",
|
|
"Bub1",
|
|
"Tpx2",
|
|
"Aurka",
|
|
"Ect2",
|
|
"Cks1b",
|
|
"Kif2c",
|
|
"Cdca8",
|
|
"Cenpa",
|
|
"Mki67",
|
|
"Ccnb2",
|
|
"Kif23",
|
|
"Smc4",
|
|
"G2e3",
|
|
"Tubb4b",
|
|
"Anln",
|
|
"Tacc3",
|
|
"Dlgap5",
|
|
"Ckap2",
|
|
"Ncapd2",
|
|
"Ttk",
|
|
"Ckap5",
|
|
"Cdc25c",
|
|
"Hjurp",
|
|
"Cenpe",
|
|
"Ckap2l",
|
|
"Cdca2",
|
|
"Hmgb2",
|
|
"Cks2",
|
|
"Psrc1",
|
|
"Gas2l3"
|
|
]),
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-5', figure={}, className='three columns',config=config_fig)
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-6', figure={}, className='three columns',config=config_fig)
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-7', figure={}, className='three columns',config=config_fig)
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-8', figure={}, className='three columns',config=config_fig)
|
|
]),
|
|
])
|
|
|
|
|
|
tab3_content = html.Div([
|
|
html.Div([
|
|
html.Label("UMAP condition 1"),
|
|
dcc.Dropdown(id='dpdn5', value="total_counts", multi=False,
|
|
options=df.columns),
|
|
html.Label("UMAP condition 2"),
|
|
dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
|
|
options=df.columns),
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-9', figure={}, className='four columns',config=config_fig)
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-10', figure={}, className='four columns',config=config_fig)
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='scatter-plot-11', figure={}, className='four columns',config=config_fig)
|
|
]),
|
|
html.Div([
|
|
dcc.Graph(id='my-graph2', figure={}, clickData=None, hoverData=None,
|
|
className='four columns',config=config_fig
|
|
)
|
|
]),
|
|
])
|
|
|
|
|
|
app.layout = html.Div([
|
|
dcc.Tabs(id='tabs', style= {'width': 400,
|
|
'font-size': '100%',
|
|
'height': 50}, value='tab1',children=[
|
|
dcc.Tab(label='QC', value='tab1', children=tab1_content),
|
|
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
|
|
dcc.Tab(label='Custom', value='tab3', children=tab3_content),
|
|
]),
|
|
])
|
|
|
|
|
|
@app.callback(
|
|
Output("min-slider-1", "value"),
|
|
Output("max-slider-1", "value"),
|
|
Output("min-slider-2", "value"),
|
|
Output("max-slider-2", "value"),
|
|
Output("min-slider-3", "value"),
|
|
Output("max-slider-3", "value"),
|
|
Input("min-slider-1", "value"),
|
|
Input("max-slider-1", "value"),
|
|
Input("min-slider-2", "value"),
|
|
Input("max-slider-2", "value"),
|
|
Input("min-slider-3", "value"),
|
|
Input("max-slider-3", "value"),
|
|
)
|
|
def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
|
|
return min_1, max_1, min_2, max_2, min_3, max_3
|
|
|
|
@app.callback(
|
|
Output('range-slider-1', 'value'),
|
|
Output('range-slider-2', 'value'),
|
|
Output('range-slider-3', 'value'),
|
|
Input('min-slider-1', 'value'),
|
|
Input('max-slider-1', 'value'),
|
|
Input('min-slider-2', 'value'),
|
|
Input('max-slider-2', 'value'),
|
|
Input('min-slider-3', 'value'),
|
|
Input('max-slider-3', 'value'),
|
|
)
|
|
def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
|
|
return [min_1, max_1], [min_2, max_2], [min_3, max_3]
|
|
|
|
@app.callback(
|
|
Output(component_id='my-graph', component_property='figure'),
|
|
Output(component_id='pie-graph', component_property='figure'),
|
|
Output(component_id='scatter-plot', component_property='figure'),
|
|
Output(component_id='scatter-plot-2', component_property='figure'),
|
|
Output(component_id='scatter-plot-3', component_property='figure'),
|
|
Output(component_id='scatter-plot-4', component_property='figure'),
|
|
Output(component_id='scatter-plot-5', component_property='figure'),
|
|
Output(component_id='scatter-plot-6', component_property='figure'),
|
|
Output(component_id='scatter-plot-7', component_property='figure'),
|
|
Output(component_id='scatter-plot-8', component_property='figure'),
|
|
Output(component_id='scatter-plot-9', component_property='figure'),
|
|
Output(component_id='scatter-plot-10', component_property='figure'),
|
|
Output(component_id='scatter-plot-11', component_property='figure'),
|
|
Output(component_id='my-graph2', component_property='figure'),
|
|
Input(component_id='dpdn2', component_property='value'),
|
|
Input(component_id='dpdn3', component_property='value'),
|
|
Input(component_id='dpdn4', component_property='value'),
|
|
Input(component_id='dpdn5', component_property='value'),
|
|
Input(component_id='dpdn6', component_property='value'),
|
|
Input(component_id='range-slider-1', component_property='value'),
|
|
Input(component_id='range-slider-2', component_property='value'),
|
|
Input(component_id='range-slider-3', component_property='value')
|
|
)
|
|
|
|
def update_graph_and_pie_chart(batch_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, range_value_1, range_value_2, range_value_3):
|
|
dff = df.filter(
|
|
(pl.col('batch').cast(str).is_in(batch_chosen)) &
|
|
(pl.col(col_features) >= range_value_1[0]) &
|
|
(pl.col(col_features) <= range_value_1[1]) &
|
|
(pl.col(col_counts) >= range_value_2[0]) &
|
|
(pl.col(col_counts) <= range_value_2[1]) &
|
|
(pl.col(col_mt) >= range_value_3[0]) &
|
|
(pl.col(col_mt) <= range_value_3[1])
|
|
)
|
|
|
|
|
|
dff = dff.with_columns(dff['batch'].cast(str))
|
|
dff = dff.with_columns(dff['batch'].cast(pl.Categorical))
|
|
|
|
|
|
fig_violin = px.violin(data_frame=dff, x='batch', y=col_features, box=True, points="all",
|
|
color='batch', hover_name='batch',template="seaborn")
|
|
|
|
|
|
category_counts = dff.group_by("batch").agg(pl.col("batch").count().alias("count"))
|
|
total_count = len(dff)
|
|
category_counts = category_counts.with_columns((pl.col("count") / total_count * 100).alias("normalized_count"))
|
|
|
|
|
|
labels = category_counts["batch"].to_list()
|
|
values = category_counts["normalized_count"].to_list()
|
|
|
|
total_cells = total_count
|
|
pie_title = f'Percentage of Total Cells: {total_cells}'
|
|
|
|
fig_pie = px.pie(names=labels, values=values, title=pie_title,template="seaborn")
|
|
|
|
|
|
fig_scatter = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color='batch',
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch',template="seaborn")
|
|
|
|
fig_scatter_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch',template="seaborn")
|
|
|
|
fig_scatter_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch',template="seaborn")
|
|
|
|
|
|
fig_scatter_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch',template="seaborn")
|
|
|
|
fig_scatter_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch', title="S-cycle gene:",template="seaborn")
|
|
|
|
fig_scatter_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch', title="G2M-cycle gene:",template="seaborn")
|
|
|
|
fig_scatter_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch', title="S score:",template="seaborn")
|
|
|
|
fig_scatter_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch', title="G2M score:",template="seaborn")
|
|
|
|
fig_scatter_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch',template="seaborn")
|
|
|
|
fig_scatter_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
|
|
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
hover_name='batch',template="seaborn")
|
|
|
|
fig_scatter_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color='batch',
|
|
|
|
hover_name='batch',template="seaborn")
|
|
|
|
fig_violin2 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
|
|
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
|
|
|
|
|
|
return fig_violin, fig_pie, fig_scatter, fig_scatter_2, fig_scatter_3, fig_scatter_4, fig_scatter_5, fig_scatter_6, fig_scatter_7, fig_scatter_8, fig_scatter_9, fig_scatter_10, fig_scatter_11, fig_violin2
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run_server(debug=True, use_reloader=False)
|
|
|