Arts-of-coding commited on
Commit
96a35a3
·
verified ·
1 Parent(s): 5a838c9

Delete pages/keratinocytes_raw_integration.py

Browse files
pages/keratinocytes_raw_integration.py DELETED
@@ -1,488 +0,0 @@
1
- # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
- # Shoutout to Coding-with-Adam for the initial template of the project:
3
- # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
-
5
- import dash
6
- from dash import dcc, html, Output, Input, callback
7
- import plotly.express as px
8
- import dash_callback_chain
9
- import yaml
10
- import polars as pl
11
- import os
12
- pl.enable_string_cache(False)
13
-
14
- dash.register_page(__name__, location="sidebar")
15
-
16
- dataset = "datasingleron/keratinocytes/singleron_keratinocytes_umap_clusres"
17
-
18
- # Set custom resolution for plots:
19
- config_fig = {
20
- 'toImageButtonOptions': {
21
- 'format': 'svg',
22
- 'filename': 'custom_image',
23
- 'height': 600,
24
- 'width': 700,
25
- 'scale': 1,
26
- }
27
- }
28
- from adlfs import AzureBlobFileSystem
29
- mountpount=os.environ['AZURE_MOUNT_POINT'],
30
- AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
31
- AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
32
-
33
- # Load in config file
34
- config_path = "./data/config.yaml"
35
-
36
- # Add the read-in data from the yaml file
37
- def read_config(filename):
38
- with open(filename, 'r') as yaml_file:
39
- config = yaml.safe_load(yaml_file)
40
- return config
41
-
42
- config = read_config(config_path)
43
- path_parquet = config.get("path_parquet")
44
- col_batch = config.get("col_batch")
45
- col_features = config.get("col_features")
46
- col_counts = config.get("col_counts")
47
- col_mt = config.get("col_mt")
48
-
49
- #filepath = f"az://{path_parquet}"
50
-
51
- storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY,'anon': False}
52
- #azfs = AzureBlobFileSystem(**storage_options )
53
-
54
- # Load in multiple dataframes
55
- df = pl.read_parquet(f"az://{dataset}.parquet", storage_options=storage_options)
56
-
57
- # Setup the app
58
- #external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
59
- #app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/'
60
-
61
- #df = pl.read_parquet(filepath,storage_options=storage_options)
62
- #df = pl.DataFrame()
63
- #abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
64
- #df = df.rename({"__index_level_0__": "Unnamed: 0"})
65
-
66
- #df1 = pl.read_parquet(filepath, storage_options=storage_options)
67
-
68
- #df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
69
-
70
- #tab0_content = html.Div([
71
- # html.Label("Dataset chosen"),
72
- # dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
73
- # options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
74
- #])
75
-
76
- #@app.callback(
77
- # Input(component_id='dpdn1', component_property='value')
78
- #)
79
-
80
- #def update_filepath(dpdn1):
81
- # global df
82
- # if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
83
- # print("not identical filepath, chosing other")
84
- # df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
85
- # df = df2
86
- # return
87
-
88
- #df = pl.read_parquet(filepath, storage_options=storage_options)
89
- min_value = df[col_features].min()
90
- max_value = df[col_features].max()
91
-
92
- min_value_2 = df[col_counts].min()
93
- min_value_2 = round(min_value_2)
94
- max_value_2 = df[col_counts].max()
95
- max_value_2 = round(max_value_2)
96
-
97
- min_value_3 = df[col_mt].min()
98
- min_value_3 = round(min_value_3, 1)
99
- max_value_3 = df[col_mt].max()
100
- max_value_3 = round(max_value_3, 1)
101
-
102
- # Loads in the conditions specified in the yaml file
103
-
104
- # Note: Future version perhaps all values from a column in the dataframe of the parquet file
105
- # Note 2: This could also be a tsv of the categories and own specified colors
106
- #conditions = df[col_batch].unique().to_list()
107
- # Create the first tab content
108
- # Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
109
-
110
- tab1_content = html.Div([
111
- html.Label("Column chosen"),
112
- dcc.Dropdown(id='dpdn2', value="batch", multi=False,
113
- options=df.columns),
114
- html.Label("N Genes by Counts"),
115
- dcc.RangeSlider(
116
- id='range-slider-1',
117
- step=250,
118
- value=[min_value, max_value],
119
- marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
120
- ),
121
- dcc.Input(id='min-slider-1', type='number', value=min_value, debounce=True),
122
- dcc.Input(id='max-slider-1', type='number', value=max_value, debounce=True),
123
- html.Label("Total Counts"),
124
- dcc.RangeSlider(
125
- id='range-slider-2',
126
- step=7500,
127
- value=[min_value_2, max_value_2],
128
- marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
129
- ),
130
- dcc.Input(id='min-slider-2', type='number', value=min_value_2, debounce=True),
131
- dcc.Input(id='max-slider-2', type='number', value=max_value_2, debounce=True),
132
- html.Label("Percent Mitochondrial Genes"),
133
- dcc.RangeSlider(
134
- id='range-slider-3',
135
- step=5,
136
- min=0,
137
- max=100,
138
- value=[min_value_3, max_value_3],
139
- ),
140
- dcc.Input(id='min-slider-3', type='number', value=min_value_3, debounce=True),
141
- dcc.Input(id='max-slider-3', type='number', value=max_value_3, debounce=True),
142
- html.Div([
143
- dcc.Graph(id='pie-graph', figure={}, className='four columns',config=config_fig),
144
- dcc.Graph(id='my-graph', figure={}, clickData=None, hoverData=None,
145
- className='four columns',config=config_fig
146
- ),
147
- dcc.Graph(id='scatter-plot', figure={}, className='four columns',config=config_fig)
148
- ]),
149
- html.Div([
150
- dcc.Graph(id='scatter-plot-2', figure={}, className='four columns',config=config_fig)
151
- ]),
152
- html.Div([
153
- dcc.Graph(id='scatter-plot-3', figure={}, className='four columns',config=config_fig)
154
- ]),
155
- html.Div([
156
- dcc.Graph(id='scatter-plot-4', figure={}, className='four columns',config=config_fig)
157
- ]),
158
- ])
159
-
160
- # Create the second tab content with scatter-plot-5 and scatter-plot-6
161
- tab2_content = html.Div([
162
- html.Div([
163
- html.Label("S-cycle genes"),
164
- dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
165
- options=[
166
- "MCM5",
167
- "PCNA",
168
- "TYMS",
169
- "FEN1",
170
- "MCM2",
171
- "MCM4",
172
- "RRM1",
173
- "UNG",
174
- "GINS2",
175
- "MCM6",
176
- "CDCA7",
177
- "DTL",
178
- "PRIM1",
179
- "UHRF1",
180
- "MLF1IP",
181
- "HELLS",
182
- "RFC2",
183
- "RPA2",
184
- "NASP",
185
- "RAD51AP1",
186
- "GMNN",
187
- "WDR76",
188
- "SLBP",
189
- "CCNE2",
190
- "UBR7",
191
- "POLD3",
192
- "MSH2",
193
- "ATAD2",
194
- "RAD51",
195
- "RRM2",
196
- "CDC45",
197
- "CDC6",
198
- "EXO1",
199
- "TIPIN",
200
- "DSCC1",
201
- "BLM",
202
- "CASP8AP2",
203
- "USP1",
204
- "CLSPN",
205
- "POLA1",
206
- "CHAF1B",
207
- "BRIP1",
208
- "E2F8"
209
- ]),
210
- html.Label("G2M-cycle genes"),
211
- dcc.Dropdown(id='dpdn4', value="TOP2A", multi=False,
212
- options=[
213
- 'HMGB2', 'CDK1', 'NUSAP1', 'UBE2C', 'BIRC5', 'TPX2', 'TOP2A', 'NDC80', 'CKS2', 'NUF2', 'CKS1B', 'MKI67', 'TMPO', 'CENPF', 'TACC3', 'FAM64A', 'SMC4', 'CCNB2', 'CKAP2L', 'CKAP2', 'AURKB', 'BUB1', 'KIF11', 'ANP32E', 'TUBB4B', 'GTSE1', 'KIF20B', 'HJURP', 'CDCA3', 'HN1', 'CDC20', 'TTK', 'CDC25C', 'KIF2C', 'RANGAP1', 'NCAPD2', 'DLGAP5', 'CDCA2', 'CDCA8', 'ECT2', 'KIF23', 'HMMR', 'AURKA', 'PSRC1', 'ANLN', 'LBR', 'CKAP5',
214
- 'CENPE', 'CTCF', 'NEK2', 'G2E3', 'GAS2L3', 'CBX5', 'CENPA'
215
- ]),
216
- ]),
217
- html.Div([
218
- dcc.Graph(id='scatter-plot-5', figure={}, className='three columns',config=config_fig)
219
- ]),
220
- html.Div([
221
- dcc.Graph(id='scatter-plot-6', figure={}, className='three columns',config=config_fig)
222
- ]),
223
- html.Div([
224
- dcc.Graph(id='scatter-plot-7', figure={}, className='three columns',config=config_fig)
225
- ]),
226
- html.Div([
227
- dcc.Graph(id='scatter-plot-8', figure={}, className='three columns',config=config_fig)
228
- ]),
229
- ])
230
-
231
- # Create the second tab content with scatter-plot-5 and scatter-plot-6
232
- tab3_content = html.Div([
233
- html.Div([
234
- html.Label("UMAP condition 1"),
235
- dcc.Dropdown(id='dpdn5', value="batch", multi=False,
236
- options=df.columns),
237
- html.Label("UMAP condition 2"),
238
- dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
239
- options=df.columns),
240
- html.Div([
241
- dcc.Graph(id='scatter-plot-9', figure={}, className='four columns',config=config_fig)
242
- ]),
243
- html.Div([
244
- dcc.Graph(id='scatter-plot-10', figure={}, className='four columns',config=config_fig)
245
- ]),
246
- html.Div([
247
- dcc.Graph(id='scatter-plot-11', figure={}, className='four columns',config=config_fig)
248
- ]),
249
- html.Div([
250
- dcc.Graph(id='my-graph2', figure={}, clickData=None, hoverData=None,
251
- className='four columns',config=config_fig
252
- )
253
- ]),
254
- ]),
255
- ])
256
- # html.Div([
257
- # dcc.Graph(id='scatter-plot-12', figure={}, className='four columns',config=config_fig)
258
- # ]),
259
-
260
-
261
- tab4_content = html.Div([
262
- html.Div([
263
- html.Label("Multi gene"),
264
- dcc.Dropdown(id='dpdn7', value=["PAX6", "TP63", "SPP1", "S100A9", "KRT8"], multi=True,
265
- options=df.columns),
266
- ]),
267
- html.Div([
268
- dcc.Graph(id='scatter-plot-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
269
- ]),
270
- ])
271
-
272
- # Define the tabs layout
273
- layout = html.Div([
274
- html.H1(f'Dataset analysis dashboard: {dataset}'),
275
- dcc.Tabs(id='tabs', style= {'width': 600,
276
- 'font-size': '100%',
277
- 'height': 50}, value='tab1',children=[
278
- #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
279
- dcc.Tab(label='QC', value='tab1', children=tab1_content),
280
- dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
281
- dcc.Tab(label='Custom', value='tab3', children=tab3_content),
282
- dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
283
- ]),
284
- ])
285
-
286
- # Define the circular callback
287
- @callback(
288
- Output("min-slider-1", "value"),
289
- Output("max-slider-1", "value"),
290
- Output("min-slider-2", "value"),
291
- Output("max-slider-2", "value"),
292
- Output("min-slider-3", "value"),
293
- Output("max-slider-3", "value"),
294
- Input("min-slider-1", "value"),
295
- Input("max-slider-1", "value"),
296
- Input("min-slider-2", "value"),
297
- Input("max-slider-2", "value"),
298
- Input("min-slider-3", "value"),
299
- Input("max-slider-3", "value"),
300
- )
301
- def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
302
- return min_1, max_1, min_2, max_2, min_3, max_3
303
-
304
- @callback(
305
- Output('range-slider-1', 'value'),
306
- Output('range-slider-2', 'value'),
307
- Output('range-slider-3', 'value'),
308
- Input('min-slider-1', 'value'),
309
- Input('max-slider-1', 'value'),
310
- Input('min-slider-2', 'value'),
311
- Input('max-slider-2', 'value'),
312
- Input('min-slider-3', 'value'),
313
- Input('max-slider-3', 'value'),
314
- )
315
- def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
316
- return [min_1, max_1], [min_2, max_2], [min_3, max_3]
317
-
318
- @callback(
319
- Output(component_id='my-graph', component_property='figure'),
320
- Output(component_id='pie-graph', component_property='figure'),
321
- Output(component_id='scatter-plot', component_property='figure'),
322
- Output(component_id='scatter-plot-2', component_property='figure'),
323
- Output(component_id='scatter-plot-3', component_property='figure'),
324
- Output(component_id='scatter-plot-4', component_property='figure'), # Add this new scatter plot
325
- Output(component_id='scatter-plot-5', component_property='figure'),
326
- Output(component_id='scatter-plot-6', component_property='figure'),
327
- Output(component_id='scatter-plot-7', component_property='figure'),
328
- Output(component_id='scatter-plot-8', component_property='figure'),
329
- Output(component_id='scatter-plot-9', component_property='figure'),
330
- Output(component_id='scatter-plot-10', component_property='figure'),
331
- Output(component_id='scatter-plot-11', component_property='figure'),
332
- Output(component_id='scatter-plot-12', component_property='figure'),
333
- Output(component_id='my-graph2', component_property='figure'),
334
- Input(component_id='dpdn2', component_property='value'),
335
- Input(component_id='dpdn3', component_property='value'),
336
- Input(component_id='dpdn4', component_property='value'),
337
- Input(component_id='dpdn5', component_property='value'),
338
- Input(component_id='dpdn6', component_property='value'),
339
- Input(component_id='dpdn7', component_property='value'),
340
- Input(component_id='range-slider-1', component_property='value'),
341
- Input(component_id='range-slider-2', component_property='value'),
342
- Input(component_id='range-slider-3', component_property='value'),
343
-
344
- )
345
-
346
- def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen, range_value_1, range_value_2, range_value_3): #batch_chosen,
347
- batch_chosen = df[col_chosen].unique().to_list()
348
- dff = df.filter(
349
- (pl.col(col_chosen).cast(str).is_in(batch_chosen)) &
350
- (pl.col(col_features) >= range_value_1[0]) &
351
- (pl.col(col_features) <= range_value_1[1]) &
352
- (pl.col(col_counts) >= range_value_2[0]) &
353
- (pl.col(col_counts) <= range_value_2[1]) &
354
- (pl.col(col_mt) >= range_value_3[0]) &
355
- (pl.col(col_mt) <= range_value_3[1])
356
- )
357
-
358
- #Drop categories that are not in the filtered data
359
- dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
360
-
361
- dff = dff.sort(col_chosen)
362
-
363
- # Plot figures
364
- fig_violin = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
365
- color=col_chosen, hover_name=col_chosen,template="seaborn")
366
-
367
- # Cache commonly used subexpressions
368
- total_count = pl.lit(len(dff))
369
- category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
370
- category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
371
-
372
- # Sort the dataframe
373
- #category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
374
-
375
- # Display the result
376
- total_cells = total_count # Calculate total number of cells
377
- pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
378
-
379
- # Calculate the mean expression
380
-
381
- # Melt wide format DataFrame into long format
382
- # Specify batch column as string type and gene columns as float type
383
- list_conds = condition3_chosen
384
- list_conds += [col_chosen]
385
- dff_pre = dff.select(list_conds)
386
-
387
- # Melt wide format DataFrame into long format
388
- dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
389
-
390
- # Calculate the mean expression levels for each gene in each region
391
- expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect()
392
-
393
- # Calculate the percentage total expressed
394
- dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
395
- count = 1
396
- dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
397
- dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
398
- dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
399
- dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
400
- result = dff_5.select([
401
- pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
402
- .then(pl.col('len') / pl.col('total')*100)
403
- .otherwise(None).alias("%"),
404
- ])
405
- result = result.with_columns(pl.col("%").fill_null(0))
406
- dff_5[["percentage"]] = result[["%"]]
407
- dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
408
-
409
- # Final part to join the percentage expressed and mean expression levels
410
- # TO DO
411
- expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
412
-
413
- # Order the dataframe on ascending categories
414
- expression_means = expression_means.sort(col_chosen, descending=True)
415
-
416
- #expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
417
- category_counts = category_counts.sort(col_chosen, descending=True)
418
-
419
- fig_pie = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
420
-
421
- #labels = category_counts[col_chosen].to_list()
422
- #values = category_counts["normalized_count"].to_list()
423
-
424
- # Create the scatter plots
425
- fig_scatter = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
426
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
427
- hover_name='batch',template="seaborn")
428
-
429
- fig_scatter_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
430
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
431
- hover_name='batch',template="seaborn")
432
-
433
- fig_scatter_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
434
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
435
- hover_name='batch',template="seaborn")
436
-
437
-
438
- fig_scatter_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
439
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
440
- hover_name='batch',template="seaborn")
441
-
442
- fig_scatter_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
443
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
444
- hover_name='batch', title="S-cycle gene:",template="seaborn")
445
-
446
- fig_scatter_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
447
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
448
- hover_name='batch', title="G2M-cycle gene:",template="seaborn")
449
-
450
- fig_scatter_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
451
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
452
- hover_name='batch', title="S score:",template="seaborn")
453
-
454
- fig_scatter_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
455
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
456
- hover_name='batch', title="G2M score:",template="seaborn")
457
-
458
- # Sort values of custom in-between
459
- dff = dff.sort(condition1_chosen)
460
-
461
- fig_scatter_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
462
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
463
- hover_name='batch',template="seaborn")
464
-
465
- fig_scatter_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
466
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
467
- hover_name='batch',template="seaborn")
468
-
469
- fig_scatter_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
470
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
471
- hover_name='batch',template="seaborn")
472
-
473
- fig_scatter_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
474
- size="percentage", size_max = 20,
475
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
476
- hover_name=col_chosen,template="seaborn")
477
-
478
- fig_violin2 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
479
- color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
480
-
481
-
482
- return fig_violin, fig_pie, fig_scatter, fig_scatter_2, fig_scatter_3, fig_scatter_4, fig_scatter_5, fig_scatter_6, fig_scatter_7, fig_scatter_8, fig_scatter_9, fig_scatter_10, fig_scatter_11, fig_scatter_12, fig_violin2
483
-
484
- # Set http://localhost:5000/ in web browser
485
- # Now create your regular FASTAPI application
486
-
487
- #if __name__ == '__main__':
488
- # app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) #