Arts-of-coding
commited on
Update pages/d101110xflex.py
Browse files- pages/d101110xflex.py +82 -82
pages/d101110xflex.py
CHANGED
@@ -113,51 +113,51 @@ tab1_content = html.Div([
|
|
113 |
options=df.columns),
|
114 |
html.Label("N Genes by Counts"),
|
115 |
dcc.RangeSlider(
|
116 |
-
id='range-
|
117 |
step=250,
|
118 |
value=[min_value, max_value],
|
119 |
marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
|
120 |
),
|
121 |
-
dcc.Input(id='min-
|
122 |
-
dcc.Input(id='max-
|
123 |
html.Label("Total Counts"),
|
124 |
dcc.RangeSlider(
|
125 |
-
id='range-
|
126 |
step=7500,
|
127 |
value=[min_value_2, max_value_2],
|
128 |
marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
|
129 |
),
|
130 |
-
dcc.Input(id='min-
|
131 |
-
dcc.Input(id='max-
|
132 |
html.Label("Percent Mitochondrial Genes"),
|
133 |
dcc.RangeSlider(
|
134 |
-
id='range-
|
135 |
step=5,
|
136 |
min=0,
|
137 |
max=100,
|
138 |
value=[min_value_3, max_value_3],
|
139 |
),
|
140 |
-
dcc.Input(id='min-
|
141 |
-
dcc.Input(id='max-
|
142 |
html.Div([
|
143 |
-
dcc.Graph(id='pie-
|
144 |
-
dcc.Graph(id='my-
|
145 |
className='four columns',config=config_fig
|
146 |
),
|
147 |
-
dcc.Graph(id='scatter-
|
148 |
]),
|
149 |
html.Div([
|
150 |
-
dcc.Graph(id='scatter-
|
151 |
]),
|
152 |
html.Div([
|
153 |
-
dcc.Graph(id='scatter-
|
154 |
]),
|
155 |
html.Div([
|
156 |
-
dcc.Graph(id='scatter-
|
157 |
]),
|
158 |
])
|
159 |
|
160 |
-
# Create the second tab content with scatter-
|
161 |
tab2_content = html.Div([
|
162 |
html.Div([
|
163 |
html.Label("S-cycle genes"),
|
@@ -215,20 +215,20 @@ tab2_content = html.Div([
|
|
215 |
]),
|
216 |
]),
|
217 |
html.Div([
|
218 |
-
dcc.Graph(id='scatter-
|
219 |
]),
|
220 |
html.Div([
|
221 |
-
dcc.Graph(id='scatter-
|
222 |
]),
|
223 |
html.Div([
|
224 |
-
dcc.Graph(id='scatter-
|
225 |
]),
|
226 |
html.Div([
|
227 |
-
dcc.Graph(id='scatter-
|
228 |
]),
|
229 |
])
|
230 |
|
231 |
-
# Create the second tab content with scatter-
|
232 |
tab3_content = html.Div([
|
233 |
html.Div([
|
234 |
html.Label("UMAP condition 1"),
|
@@ -238,23 +238,23 @@ tab3_content = html.Div([
|
|
238 |
dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
|
239 |
options=df.columns),
|
240 |
html.Div([
|
241 |
-
dcc.Graph(id='scatter-
|
242 |
]),
|
243 |
html.Div([
|
244 |
-
dcc.Graph(id='scatter-
|
245 |
]),
|
246 |
html.Div([
|
247 |
-
dcc.Graph(id='scatter-
|
248 |
]),
|
249 |
html.Div([
|
250 |
-
dcc.Graph(id='my-
|
251 |
className='four columns',config=config_fig
|
252 |
)
|
253 |
]),
|
254 |
]),
|
255 |
])
|
256 |
# html.Div([
|
257 |
-
# dcc.Graph(id='scatter-
|
258 |
# ]),
|
259 |
|
260 |
|
@@ -265,7 +265,7 @@ tab4_content = html.Div([
|
|
265 |
options=df.columns),
|
266 |
]),
|
267 |
html.Div([
|
268 |
-
dcc.Graph(id='scatter-
|
269 |
]),
|
270 |
])
|
271 |
|
@@ -284,63 +284,63 @@ layout = html.Div([
|
|
284 |
|
285 |
# Define the circular callback
|
286 |
@callback(
|
287 |
-
Output("min-
|
288 |
-
Output("max-
|
289 |
-
Output("min-
|
290 |
-
Output("max-
|
291 |
-
Output("min-
|
292 |
-
Output("max-
|
293 |
-
Input("min-
|
294 |
-
Input("max-
|
295 |
-
Input("min-
|
296 |
-
Input("max-
|
297 |
-
Input("min-
|
298 |
-
Input("max-
|
299 |
prevent_initial_call=True
|
300 |
)
|
301 |
def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
|
302 |
return min_1, max_1, min_2, max_2, min_3, max_3
|
303 |
|
304 |
@callback(
|
305 |
-
Output('range-
|
306 |
-
Output('range-
|
307 |
-
Output('range-
|
308 |
-
Input('min-
|
309 |
-
Input('max-
|
310 |
-
Input('min-
|
311 |
-
Input('max-
|
312 |
-
Input('min-
|
313 |
-
Input('max-
|
314 |
prevent_initial_call=True
|
315 |
)
|
316 |
def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
|
317 |
return [min_1, max_1], [min_2, max_2], [min_3, max_3]
|
318 |
|
319 |
@callback(
|
320 |
-
Output(component_id='my-
|
321 |
-
Output(component_id='pie-
|
322 |
-
Output(component_id='scatter-
|
323 |
-
Output(component_id='scatter-
|
324 |
-
Output(component_id='scatter-
|
325 |
-
Output(component_id='scatter-
|
326 |
-
Output(component_id='scatter-
|
327 |
-
Output(component_id='scatter-
|
328 |
-
Output(component_id='scatter-
|
329 |
-
Output(component_id='scatter-
|
330 |
-
Output(component_id='scatter-
|
331 |
-
Output(component_id='scatter-
|
332 |
-
Output(component_id='scatter-
|
333 |
-
Output(component_id='scatter-
|
334 |
-
Output(component_id='my-
|
335 |
Input(component_id='dpdn2', component_property='value'),
|
336 |
Input(component_id='dpdn3', component_property='value'),
|
337 |
Input(component_id='dpdn4', component_property='value'),
|
338 |
Input(component_id='dpdn5', component_property='value'),
|
339 |
Input(component_id='dpdn6', component_property='value'),
|
340 |
Input(component_id='dpdn7', component_property='value'),
|
341 |
-
Input(component_id='range-
|
342 |
-
Input(component_id='range-
|
343 |
-
Input(component_id='range-
|
344 |
prevent_initial_call=True
|
345 |
)
|
346 |
|
@@ -362,7 +362,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
362 |
dff = dff.sort(col_chosen)
|
363 |
|
364 |
# Plot figures
|
365 |
-
|
366 |
color=col_chosen, hover_name=col_chosen,template="seaborn")
|
367 |
|
368 |
# Cache commonly used subexpressions
|
@@ -417,70 +417,70 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
417 |
#expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
|
418 |
category_counts = category_counts.sort(col_chosen)
|
419 |
|
420 |
-
|
421 |
|
422 |
#labels = category_counts[col_chosen].to_list()
|
423 |
#values = category_counts["normalized_count"].to_list()
|
424 |
|
425 |
# Create the scatter plots
|
426 |
-
|
427 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
428 |
hover_name='batch',template="seaborn")
|
429 |
|
430 |
-
|
431 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
432 |
hover_name='batch',template="seaborn")
|
433 |
|
434 |
-
|
435 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
436 |
hover_name='batch',template="seaborn")
|
437 |
|
438 |
|
439 |
-
|
440 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
441 |
hover_name='batch',template="seaborn")
|
442 |
|
443 |
-
|
444 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
445 |
hover_name='batch', title="S-cycle gene:",template="seaborn")
|
446 |
|
447 |
-
|
448 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
449 |
hover_name='batch', title="G2M-cycle gene:",template="seaborn")
|
450 |
|
451 |
-
|
452 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
453 |
hover_name='batch', title="S score:",template="seaborn")
|
454 |
|
455 |
-
|
456 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
457 |
hover_name='batch', title="G2M score:",template="seaborn")
|
458 |
|
459 |
# Sort values of custom in-between
|
460 |
dff = dff.sort(condition1_chosen)
|
461 |
|
462 |
-
|
463 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
464 |
hover_name='batch',template="seaborn")
|
465 |
|
466 |
-
|
467 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
468 |
hover_name='batch',template="seaborn")
|
469 |
|
470 |
-
|
471 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
472 |
hover_name='batch',template="seaborn")
|
473 |
|
474 |
-
|
475 |
size="percentage", size_max = 20,
|
476 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
477 |
hover_name=col_chosen,template="seaborn")
|
478 |
|
479 |
-
|
480 |
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
|
481 |
|
482 |
|
483 |
-
return
|
484 |
|
485 |
# Set http://localhost:5000/ in web browser
|
486 |
# Now create your regular FASTAPI application
|
|
|
113 |
options=df.columns),
|
114 |
html.Label("N Genes by Counts"),
|
115 |
dcc.RangeSlider(
|
116 |
+
id='range-slider_db2-1',
|
117 |
step=250,
|
118 |
value=[min_value, max_value],
|
119 |
marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
|
120 |
),
|
121 |
+
dcc.Input(id='min-slider_db2-1', type='number', value=min_value, debounce=True),
|
122 |
+
dcc.Input(id='max-slider_db2-1', type='number', value=max_value, debounce=True),
|
123 |
html.Label("Total Counts"),
|
124 |
dcc.RangeSlider(
|
125 |
+
id='range-slider_db2-2',
|
126 |
step=7500,
|
127 |
value=[min_value_2, max_value_2],
|
128 |
marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
|
129 |
),
|
130 |
+
dcc.Input(id='min-slider_db2-2', type='number', value=min_value_2, debounce=True),
|
131 |
+
dcc.Input(id='max-slider_db2-2', type='number', value=max_value_2, debounce=True),
|
132 |
html.Label("Percent Mitochondrial Genes"),
|
133 |
dcc.RangeSlider(
|
134 |
+
id='range-slider_db2-3',
|
135 |
step=5,
|
136 |
min=0,
|
137 |
max=100,
|
138 |
value=[min_value_3, max_value_3],
|
139 |
),
|
140 |
+
dcc.Input(id='min-slider_db2-3', type='number', value=min_value_3, debounce=True),
|
141 |
+
dcc.Input(id='max-slider_db2-3', type='number', value=max_value_3, debounce=True),
|
142 |
html.Div([
|
143 |
+
dcc.Graph(id='pie-graph_db2', figure={}, className='four columns',config=config_fig),
|
144 |
+
dcc.Graph(id='my-graph_db2', figure={}, clickData=None, hoverData=None,
|
145 |
className='four columns',config=config_fig
|
146 |
),
|
147 |
+
dcc.Graph(id='scatter-plot_db2', figure={}, className='four columns',config=config_fig)
|
148 |
]),
|
149 |
html.Div([
|
150 |
+
dcc.Graph(id='scatter-plot_db2-2', figure={}, className='four columns',config=config_fig)
|
151 |
]),
|
152 |
html.Div([
|
153 |
+
dcc.Graph(id='scatter-plot_db2-3', figure={}, className='four columns',config=config_fig)
|
154 |
]),
|
155 |
html.Div([
|
156 |
+
dcc.Graph(id='scatter-plot_db2-4', figure={}, className='four columns',config=config_fig)
|
157 |
]),
|
158 |
])
|
159 |
|
160 |
+
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
161 |
tab2_content = html.Div([
|
162 |
html.Div([
|
163 |
html.Label("S-cycle genes"),
|
|
|
215 |
]),
|
216 |
]),
|
217 |
html.Div([
|
218 |
+
dcc.Graph(id='scatter-plot_db2-5', figure={}, className='three columns',config=config_fig)
|
219 |
]),
|
220 |
html.Div([
|
221 |
+
dcc.Graph(id='scatter-plot_db2-6', figure={}, className='three columns',config=config_fig)
|
222 |
]),
|
223 |
html.Div([
|
224 |
+
dcc.Graph(id='scatter-plot_db2-7', figure={}, className='three columns',config=config_fig)
|
225 |
]),
|
226 |
html.Div([
|
227 |
+
dcc.Graph(id='scatter-plot_db2-8', figure={}, className='three columns',config=config_fig)
|
228 |
]),
|
229 |
])
|
230 |
|
231 |
+
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
232 |
tab3_content = html.Div([
|
233 |
html.Div([
|
234 |
html.Label("UMAP condition 1"),
|
|
|
238 |
dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
|
239 |
options=df.columns),
|
240 |
html.Div([
|
241 |
+
dcc.Graph(id='scatter-plot_db2-9', figure={}, className='four columns',config=config_fig)
|
242 |
]),
|
243 |
html.Div([
|
244 |
+
dcc.Graph(id='scatter-plot_db2-10', figure={}, className='four columns',config=config_fig)
|
245 |
]),
|
246 |
html.Div([
|
247 |
+
dcc.Graph(id='scatter-plot_db2-11', figure={}, className='four columns',config=config_fig)
|
248 |
]),
|
249 |
html.Div([
|
250 |
+
dcc.Graph(id='my-graph_db22', figure={}, clickData=None, hoverData=None,
|
251 |
className='four columns',config=config_fig
|
252 |
)
|
253 |
]),
|
254 |
]),
|
255 |
])
|
256 |
# html.Div([
|
257 |
+
# dcc.Graph(id='scatter-plot_db2-12', figure={}, className='four columns',config=config_fig)
|
258 |
# ]),
|
259 |
|
260 |
|
|
|
265 |
options=df.columns),
|
266 |
]),
|
267 |
html.Div([
|
268 |
+
dcc.Graph(id='scatter-plot_db2-12', figure={}, className='four columns',config=config_fig)
|
269 |
]),
|
270 |
])
|
271 |
|
|
|
284 |
|
285 |
# Define the circular callback
|
286 |
@callback(
|
287 |
+
Output("min-slider_db2-1", "value", allow_duplicate=True),
|
288 |
+
Output("max-slider_db2-1", "value", allow_duplicate=True),
|
289 |
+
Output("min-slider_db2-2", "value", allow_duplicate=True),
|
290 |
+
Output("max-slider_db2-2", "value", allow_duplicate=True),
|
291 |
+
Output("min-slider_db2-3", "value", allow_duplicate=True),
|
292 |
+
Output("max-slider_db2-3", "value", allow_duplicate=True),
|
293 |
+
Input("min-slider_db2-1", "value"),
|
294 |
+
Input("max-slider_db2-1", "value"),
|
295 |
+
Input("min-slider_db2-2", "value"),
|
296 |
+
Input("max-slider_db2-2", "value"),
|
297 |
+
Input("min-slider_db2-3", "value"),
|
298 |
+
Input("max-slider_db2-3", "value"),
|
299 |
prevent_initial_call=True
|
300 |
)
|
301 |
def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
|
302 |
return min_1, max_1, min_2, max_2, min_3, max_3
|
303 |
|
304 |
@callback(
|
305 |
+
Output('range-slider_db2-1', 'value', allow_duplicate=True),
|
306 |
+
Output('range-slider_db2-2', 'value', allow_duplicate=True),
|
307 |
+
Output('range-slider_db2-3', 'value', allow_duplicate=True),
|
308 |
+
Input('min-slider_db2-1', 'value'),
|
309 |
+
Input('max-slider_db2-1', 'value'),
|
310 |
+
Input('min-slider_db2-2', 'value'),
|
311 |
+
Input('max-slider_db2-2', 'value'),
|
312 |
+
Input('min-slider_db2-3', 'value'),
|
313 |
+
Input('max-slider_db2-3', 'value'),
|
314 |
prevent_initial_call=True
|
315 |
)
|
316 |
def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
|
317 |
return [min_1, max_1], [min_2, max_2], [min_3, max_3]
|
318 |
|
319 |
@callback(
|
320 |
+
Output(component_id='my-graph_db2', component_property='figure', allow_duplicate=True),
|
321 |
+
Output(component_id='pie-graph_db2', component_property='figure', allow_duplicate=True),
|
322 |
+
Output(component_id='scatter-plot_db2', component_property='figure', allow_duplicate=True),
|
323 |
+
Output(component_id='scatter-plot_db2-2', component_property='figure', allow_duplicate=True),
|
324 |
+
Output(component_id='scatter-plot_db2-3', component_property='figure', allow_duplicate=True),
|
325 |
+
Output(component_id='scatter-plot_db2-4', component_property='figure', allow_duplicate=True), # Add this new scatter plot
|
326 |
+
Output(component_id='scatter-plot_db2-5', component_property='figure', allow_duplicate=True),
|
327 |
+
Output(component_id='scatter-plot_db2-6', component_property='figure', allow_duplicate=True),
|
328 |
+
Output(component_id='scatter-plot_db2-7', component_property='figure', allow_duplicate=True),
|
329 |
+
Output(component_id='scatter-plot_db2-8', component_property='figure', allow_duplicate=True),
|
330 |
+
Output(component_id='scatter-plot_db2-9', component_property='figure', allow_duplicate=True),
|
331 |
+
Output(component_id='scatter-plot_db2-10', component_property='figure', allow_duplicate=True),
|
332 |
+
Output(component_id='scatter-plot_db2-11', component_property='figure', allow_duplicate=True),
|
333 |
+
Output(component_id='scatter-plot_db2-12', component_property='figure', allow_duplicate=True),
|
334 |
+
Output(component_id='my-graph_db22', component_property='figure', allow_duplicate=True),
|
335 |
Input(component_id='dpdn2', component_property='value'),
|
336 |
Input(component_id='dpdn3', component_property='value'),
|
337 |
Input(component_id='dpdn4', component_property='value'),
|
338 |
Input(component_id='dpdn5', component_property='value'),
|
339 |
Input(component_id='dpdn6', component_property='value'),
|
340 |
Input(component_id='dpdn7', component_property='value'),
|
341 |
+
Input(component_id='range-slider_db2-1', component_property='value'),
|
342 |
+
Input(component_id='range-slider_db2-2', component_property='value'),
|
343 |
+
Input(component_id='range-slider_db2-3', component_property='value'),
|
344 |
prevent_initial_call=True
|
345 |
)
|
346 |
|
|
|
362 |
dff = dff.sort(col_chosen)
|
363 |
|
364 |
# Plot figures
|
365 |
+
fig_violin_db2 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
|
366 |
color=col_chosen, hover_name=col_chosen,template="seaborn")
|
367 |
|
368 |
# Cache commonly used subexpressions
|
|
|
417 |
#expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
|
418 |
category_counts = category_counts.sort(col_chosen)
|
419 |
|
420 |
+
fig_pie_db2 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
|
421 |
|
422 |
#labels = category_counts[col_chosen].to_list()
|
423 |
#values = category_counts["normalized_count"].to_list()
|
424 |
|
425 |
# Create the scatter plots
|
426 |
+
fig_scatter_db2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
|
427 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
428 |
hover_name='batch',template="seaborn")
|
429 |
|
430 |
+
fig_scatter_db2_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
|
431 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
432 |
hover_name='batch',template="seaborn")
|
433 |
|
434 |
+
fig_scatter_db2_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
|
435 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
436 |
hover_name='batch',template="seaborn")
|
437 |
|
438 |
|
439 |
+
fig_scatter_db2_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
|
440 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
441 |
hover_name='batch',template="seaborn")
|
442 |
|
443 |
+
fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
|
444 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
445 |
hover_name='batch', title="S-cycle gene:",template="seaborn")
|
446 |
|
447 |
+
fig_scatter_db2_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
|
448 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
449 |
hover_name='batch', title="G2M-cycle gene:",template="seaborn")
|
450 |
|
451 |
+
fig_scatter_db2_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
|
452 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
453 |
hover_name='batch', title="S score:",template="seaborn")
|
454 |
|
455 |
+
fig_scatter_db2_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
|
456 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
457 |
hover_name='batch', title="G2M score:",template="seaborn")
|
458 |
|
459 |
# Sort values of custom in-between
|
460 |
dff = dff.sort(condition1_chosen)
|
461 |
|
462 |
+
fig_scatter_db2_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
|
463 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
464 |
hover_name='batch',template="seaborn")
|
465 |
|
466 |
+
fig_scatter_db2_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
|
467 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
468 |
hover_name='batch',template="seaborn")
|
469 |
|
470 |
+
fig_scatter_db2_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
|
471 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
472 |
hover_name='batch',template="seaborn")
|
473 |
|
474 |
+
fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
475 |
size="percentage", size_max = 20,
|
476 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
477 |
hover_name=col_chosen,template="seaborn")
|
478 |
|
479 |
+
fig_violin_db22 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
|
480 |
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
|
481 |
|
482 |
|
483 |
+
return fig_violin_db2, fig_pie_db2, fig_scatter_db2, fig_scatter_db2_2, fig_scatter_db2_3, fig_scatter_db2_4, fig_scatter_db2_5, fig_scatter_db2_6, fig_scatter_db2_7, fig_scatter_db2_8, fig_scatter_db2_9, fig_scatter_db2_10, fig_scatter_db2_11, fig_scatter_db2_12, fig_violin_db22
|
484 |
|
485 |
# Set http://localhost:5000/ in web browser
|
486 |
# Now create your regular FASTAPI application
|