File size: 24,676 Bytes
e2afaaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
{
"cells": [
{
"cell_type": "markdown",
"id": "5d9aca72-957a-4ee2-862f-e011b9cd3a62",
"metadata": {},
"source": [
"---\n",
"title: \"Inference Endpoints\"\n",
"---\n",
"\n",
"# How to use Inference Endpoints to Embed Documents\n",
"\n",
"_Authored by: [Derek Thomas](https://huggingface.co/derek-thomas)_\n",
"\n",
"## Goal\n",
"I have a dataset I want to embed for semantic search (or QA, or RAG), I want the easiest way to do embed this and put it in a new dataset.\n",
"\n",
"## Approach\n",
"I'm using a dataset from my favorite subreddit [r/bestofredditorupdates](https://www.reddit.com/r/bestofredditorupdates/). Because it has long entries, I will use the new [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) since it has an 8k context length. I will deploy this using [Inference Endpoint](https://huggingface.co/inference-endpoints) to save time and money. To follow this tutorial, you will need to **have already added a payment method**. If you haven't, you can add one here in [billing](https://huggingface.co/docs/hub/billing#billing). To make it even easier, I'll make this fully API based.\n",
"\n",
"To make this MUCH faster I will use the [Text Embeddings Inference](https://github.com/huggingface/text-embeddings-inference) image. This has many benefits like:\n",
"- No model graph compilation step\n",
"- Small docker images and fast boot times. Get ready for true serverless!\n",
"- Token based dynamic batching\n",
"- Optimized transformers code for inference using Flash Attention, Candle and cuBLASLt\n",
"- Safetensors weight loading\n",
"- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)\n",
"\n",
"![img](https://media.githubusercontent.com/media/huggingface/text-embeddings-inference/main/assets/bs1-tp.png)"
]
},
{
"cell_type": "markdown",
"id": "3c830114-dd88-45a9-81b9-78b0e3da7384",
"metadata": {},
"source": [
"## Requirements"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35386f72-32cb-49fa-a108-3aa504e20429",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install -q aiohttp==3.8.3 datasets==2.14.6 pandas==1.5.3 requests==2.31.0 tqdm==4.66.1 huggingface-hub>=0.20"
]
},
{
"cell_type": "markdown",
"id": "b6f72042-173d-4a72-ade1-9304b43b528d",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e2beecdd-d033-4736-bd45-6754ec53b4ac",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import asyncio\n",
"from getpass import getpass\n",
"import json\n",
"from pathlib import Path\n",
"import time\n",
"from typing import Optional\n",
"\n",
"from aiohttp import ClientSession, ClientTimeout\n",
"from datasets import load_dataset, Dataset, DatasetDict\n",
"from huggingface_hub import notebook_login, create_inference_endpoint, list_inference_endpoints, whoami\n",
"import numpy as np\n",
"import pandas as pd\n",
"import requests\n",
"from tqdm.auto import tqdm"
]
},
{
"cell_type": "markdown",
"id": "5eece903-64ce-435d-a2fd-096c0ff650bf",
"metadata": {},
"source": [
"## Config\n",
"`DATASET_IN` is where your text data is\n",
"`DATASET_OUT` is where your embeddings will be stored\n",
"\n",
"Note I used 5 for the `MAX_WORKERS` since `jina-embeddings-v2` are quite memory hungry. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "df2f79f0-9f28-46e6-9fc7-27e9537ff5be",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"DATASET_IN = 'derek-thomas/dataset-creator-reddit-bestofredditorupdates'\n",
"DATASET_OUT = \"processed-subset-bestofredditorupdates\"\n",
"ENDPOINT_NAME = \"boru-jina-embeddings-demo-ie\"\n",
"\n",
"MAX_WORKERS = 5 # This is for how many async workers you want. Choose based on the model and hardware \n",
"ROW_COUNT = 100 # Choose None to use all rows, Im using 100 just for a demo"
]
},
{
"cell_type": "markdown",
"id": "1e680f3d-4900-46cc-8b49-bb6ba3e27e2b",
"metadata": {},
"source": [
"Hugging Face offers a number of GPUs that you can choose from a number of GPUs that you can choose in Inference Endpoints. Here they are in table form:\n",
"\n",
"| GPU | instanceType | instanceSize | vRAM |\n",
"|---------------------|----------------|--------------|-------|\n",
"| 1x Nvidia Tesla T4 | g4dn.xlarge | small | 16GB |\n",
"| 4x Nvidia Tesla T4 | g4dn.12xlarge | large | 64GB |\n",
"| 1x Nvidia A10G | g5.2xlarge | medium | 24GB |\n",
"| 4x Nvidia A10G | g5.12xlarge | xxlarge | 96GB |\n",
"| 1x Nvidia A100* | p4de | xlarge | 80GB |\n",
"| 2x Nvidia A100* | p4de | 2xlarge | 160GB |\n",
"\n",
"\\*Note that for A100s you might get a note to email us to get access."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3c2106c1-2e5a-443a-9ea8-a3cd0e9c5a94",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# GPU Choice\n",
"VENDOR=\"aws\"\n",
"REGION=\"us-east-1\"\n",
"INSTANCE_SIZE=\"medium\"\n",
"INSTANCE_TYPE=\"g5.2xlarge\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0ca1140c-3fcc-4b99-9210-6da1505a27b7",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ee80821056e147fa9cabf30f64dc85a8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"notebook_login()"
]
},
{
"cell_type": "markdown",
"id": "5f4ba0a8-0a6c-4705-a73b-7be09b889610",
"metadata": {},
"source": [
"Some users might have payment registered in an organization. This allows you to connect to an organization (that you are a member of) with a payment method.\n",
"\n",
"Leave it blank is you want to use your username."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "88cdbd73-5923-4ae9-9940-b6be935f70fa",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"What is your Hugging Face 🤗 username or organization? (with an added payment method) ········\n"
]
}
],
"source": [
"who = whoami()\n",
"organization = getpass(prompt=\"What is your Hugging Face 🤗 username or organization? (with an added payment method)\")\n",
"\n",
"namespace = organization or who['name']"
]
},
{
"cell_type": "markdown",
"id": "b972a719-2aed-4d2e-a24f-fae7776d5fa4",
"metadata": {},
"source": [
"## Get Dataset"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "27835fa4-3a4f-44b1-a02a-5e31584a1bba",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4041cedd3b3f4f8db3e29ec102f46a3a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading readme: 0%| | 0.00/1.73k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['id', 'content', 'score', 'date_utc', 'title', 'flair', 'poster', 'permalink', 'new', 'updated'],\n",
" num_rows: 10042\n",
"})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset = load_dataset(DATASET_IN)\n",
"dataset['train']"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8846087e-4d0d-4c0e-8aeb-ea95d9e97126",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"(100,\n",
" {'id': '10004zw',\n",
" 'content': '[removed]',\n",
" 'score': 1,\n",
" 'date_utc': Timestamp('2022-12-31 18:16:22'),\n",
" 'title': 'To All BORU contributors, Thank you :)',\n",
" 'flair': 'CONCLUDED',\n",
" 'poster': 'IsItAcOnSeQuEnCe',\n",
" 'permalink': '/r/BestofRedditorUpdates/comments/10004zw/to_all_boru_contributors_thank_you/',\n",
" 'new': False,\n",
" 'updated': False})"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"documents = dataset['train'].to_pandas().to_dict('records')[:ROW_COUNT]\n",
"len(documents), documents[0]"
]
},
{
"cell_type": "markdown",
"id": "93096cbc-81c6-4137-a283-6afb0f48fbb9",
"metadata": {},
"source": [
"# Inference Endpoints\n",
"## Create Inference Endpoint\n",
"We are going to use the [API](https://huggingface.co/docs/inference-endpoints/api_reference) to create an [Inference Endpoint](https://huggingface.co/inference-endpoints). This should provide a few main benefits:\n",
"- It's convenient (No clicking)\n",
"- It's repeatable (We have the code to run it easily)\n",
"- It's cheaper (No time spent waiting for it to load, and automatically shut it down)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "9e59de46-26b7-4bb9-bbad-8bba9931bde7",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"try:\n",
" endpoint = create_inference_endpoint(\n",
" ENDPOINT_NAME,\n",
" repository=\"jinaai/jina-embeddings-v2-base-en\",\n",
" revision=\"7302ac470bed880590f9344bfeee32ff8722d0e5\",\n",
" task=\"sentence-embeddings\",\n",
" framework=\"pytorch\",\n",
" accelerator=\"gpu\",\n",
" instance_size=INSTANCE_SIZE,\n",
" instance_type=INSTANCE_TYPE,\n",
" region=REGION,\n",
" vendor=VENDOR,\n",
" namespace=namespace,\n",
" custom_image={\n",
" \"health_route\": \"/health\",\n",
" \"env\": {\n",
" \"MAX_BATCH_TOKENS\": str(MAX_WORKERS * 2048),\n",
" \"MAX_CONCURRENT_REQUESTS\": \"512\",\n",
" \"MODEL_ID\": \"/repository\"\n",
" },\n",
" \"url\": \"ghcr.io/huggingface/text-embeddings-inference:0.5.0\",\n",
" },\n",
" type=\"protected\",\n",
" )\n",
"except:\n",
" endpoint = [ie for ie in list_inference_endpoints(namespace=namespace) if ie.name == ENDPOINT_NAME][0]\n",
" print('Loaded endpoint')"
]
},
{
"cell_type": "markdown",
"id": "0f2c97dc-34e8-49e9-b60e-f5b7366294c0",
"metadata": {},
"source": [
"There are a few design choices here:\n",
"- As discussed before we are using `jinaai/jina-embeddings-v2-base-en` as our model. \n",
" - For reproducibility we are pinning it to a specific revision.\n",
"- If you are interested in more models, check out the supported list [here](https://huggingface.co/docs/text-embeddings-inference/supported_models). \n",
" - Note that most embedding models are based on the BERT architecture.\n",
"- `MAX_BATCH_TOKENS` is chosen based on our number of workers and the context window of our embedding model.\n",
"- `type=\"protected\"` utilized the security from Inference Endpoints detailed here.\n",
"- I'm using **1x Nvidia A10** since `jina-embeddings-v2` is memory hungry (remember the 8k context length). \n",
"- You should consider further tuning `MAX_BATCH_TOKENS` and `MAX_CONCURRENT_REQUESTS` if you have high workloads\n"
]
},
{
"cell_type": "markdown",
"id": "96d173b2-8980-4554-9039-c62843d3fc7d",
"metadata": {},
"source": [
"## Wait until it's running"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "5f3a8bd2-753c-49a8-9452-899578beddc5",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 48.1 ms, sys: 15.7 ms, total: 63.8 ms\n",
"Wall time: 52.6 s\n"
]
},
{
"data": {
"text/plain": [
"InferenceEndpoint(name='boru-jina-embeddings-demo-ie', namespace='HF-test-lab', repository='jinaai/jina-embeddings-v2-base-en', status='running', url='https://k7l1xeok1jwnpbx5.us-east-1.aws.endpoints.huggingface.cloud')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"endpoint.wait()"
]
},
{
"cell_type": "markdown",
"id": "a906645e-60de-4eb6-b8b6-3ec98a9d9b00",
"metadata": {},
"source": [
"When we use `endpoint.client.post` we get a bytes string back. This is a little tedious because we need to convert this to an `np.array`, but it's just a couple quick lines in python."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e09253d5-70ff-4d0e-8888-0022ce0adf7b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.05630935, -0.03560849, 0.02789049, 0.02792823, -0.02800371,\n",
" -0.01530391, -0.01863454, -0.0077982 , 0.05374297, 0.03672185,\n",
" -0.06114018, -0.06880157, -0.0093503 , -0.03174005, -0.03206085,\n",
" 0.0610647 , 0.02243694, 0.03217408, 0.04181686, 0.00248854])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"response = endpoint.client.post(json={\"inputs\": 'This sound track was beautiful! It paints the senery in your mind so well I would recomend it even to people who hate vid. game music!', 'truncate': True}, task=\"feature-extraction\")\n",
"response = np.array(json.loads(response.decode()))\n",
"response[0][:20]"
]
},
{
"cell_type": "markdown",
"id": "0d024788-6e6e-4a8d-b192-36ee3dacca13",
"metadata": {},
"source": [
"You may have inputs that exceed the context. In such scenarios, it's up to you to handle them. In my case, I'd like to truncate rather than have an error. Let's test that it works."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a4a1cd15-dda3-4cfa-8bda-788d8c1b9e32",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The length of the embedding_input is: 300000\n"
]
},
{
"data": {
"text/plain": [
"array([-0.03088215, -0.0351537 , 0.05749275, 0.00983467, 0.02108356,\n",
" 0.04539965, 0.06107162, -0.02536954, 0.03887688, 0.01998681,\n",
" -0.05391388, 0.01529677, -0.1279156 , 0.01653782, -0.01940958,\n",
" 0.0367411 , 0.0031748 , 0.04716022, -0.00713609, -0.00155313])"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"embedding_input = 'This input will get multiplied' * 10000\n",
"print(f'The length of the embedding_input is: {len(embedding_input)}')\n",
"response = endpoint.client.post(json={\"inputs\": embedding_input, 'truncate': True}, task=\"feature-extraction\")\n",
"response = np.array(json.loads(response.decode()))\n",
"response[0][:20]"
]
},
{
"cell_type": "markdown",
"id": "f7186126-ef6a-47d0-b158-112810649cd9",
"metadata": {},
"source": [
"# Get Embeddings"
]
},
{
"cell_type": "markdown",
"id": "1dadfd68-6d46-4ce8-a165-bfeb43b1f114",
"metadata": {},
"source": [
"Here I send a document, update it with the embedding, and return it. This happens in parallel with `MAX_WORKERS`."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "ad3193fb-3def-42a8-968e-c63f2b864ca8",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"async def request(document, semaphore):\n",
" # Semaphore guard\n",
" async with semaphore:\n",
" result = await endpoint.async_client.post(json={\"inputs\": document['content'], 'truncate': True}, task=\"feature-extraction\")\n",
" result = np.array(json.loads(result.decode()))\n",
" document['embedding'] = result[0] # Assuming the API's output can be directly assigned\n",
" return document\n",
"\n",
"async def main(documents):\n",
" # Semaphore to limit concurrent requests. Adjust the number as needed.\n",
" semaphore = asyncio.BoundedSemaphore(MAX_WORKERS)\n",
"\n",
" # Creating a list of tasks\n",
" tasks = [request(document, semaphore) for document in documents]\n",
" \n",
" # Using tqdm to show progress. It's been integrated into the async loop.\n",
" for f in tqdm(asyncio.as_completed(tasks), total=len(documents)):\n",
" await f"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "ec4983af-65eb-4841-808a-3738fb4d682d",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "48a2affdee8d46f3b0c1f691eaac4b89",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/100 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Embeddings = 100 documents = 100\n",
"0 min 21.33 sec\n"
]
}
],
"source": [
"start = time.perf_counter()\n",
"\n",
"# Get embeddings\n",
"await main(documents)\n",
"\n",
"# Make sure we got it all\n",
"count = 0\n",
"for document in documents:\n",
" if 'embedding' in document.keys() and len(document['embedding']) == 768:\n",
" count += 1\n",
"print(f'Embeddings = {count} documents = {len(documents)}')\n",
"\n",
" \n",
"# Print elapsed time\n",
"elapsed_time = time.perf_counter() - start\n",
"minutes, seconds = divmod(elapsed_time, 60)\n",
"print(f\"{int(minutes)} min {seconds:.2f} sec\")"
]
},
{
"cell_type": "markdown",
"id": "bab97c7b-7bac-4bf5-9752-b528294dadc7",
"metadata": {},
"source": [
"## Pause Inference Endpoint\n",
"Now that we have finished, let's pause the endpoint so we don't incur any extra charges, this will also allow us to analyze the cost."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "540a0978-7670-4ce3-95c1-3823cc113b85",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Endpoint Status: paused\n"
]
}
],
"source": [
"endpoint = endpoint.pause()\n",
"\n",
"print(f\"Endpoint Status: {endpoint.status}\")"
]
},
{
"cell_type": "markdown",
"id": "45ad65b7-3da2-4113-9b95-8fb4e21ae793",
"metadata": {},
"source": [
"# Push updated dataset to Hub\n",
"We now have our documents updated with the embeddings we wanted. First we need to convert it back to a `Dataset` format. I find it easiest to go from list of dicts -> `pd.DataFrame` -> `Dataset`"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "9bb993f8-d624-4192-9626-8e9ed9888a1b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"df = pd.DataFrame(documents)\n",
"dd = DatasetDict({'train': Dataset.from_pandas(df)})"
]
},
{
"cell_type": "markdown",
"id": "129760c8-cae1-4b1e-8216-f5152df8c536",
"metadata": {},
"source": [
"I'm uploading it to the user's account by default (as opposed to uploading to an organization) but feel free to push to wherever you want by setting the user in the `repo_id` or in the config by setting `DATASET_OUT`"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "f48e7c55-d5b7-4ed6-8516-272ae38716b1",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d3af2e864770481db5adc3968500b5d3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4e063c42d8f4490c939bc64e626b507a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading metadata: 0%| | 0.00/823 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"dd.push_to_hub(repo_id=DATASET_OUT)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "85ea2244-a4c6-4f04-b187-965a2fc356a8",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset is at https://huggingface.co/datasets/derek-thomas/processed-subset-bestofredditorupdates\n"
]
}
],
"source": [
"print(f'Dataset is at https://huggingface.co/datasets/{who[\"name\"]}/{DATASET_OUT}')"
]
},
{
"cell_type": "markdown",
"id": "41abea64-379d-49de-8d9a-355c2f4ce1ac",
"metadata": {},
"source": [
"# Analyze Usage\n",
"1. Go to your `dashboard_url` printed below\n",
"1. Click on the Usage & Cost tab\n",
"1. See how much you have spent"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "16815445-3079-43da-b14e-b54176a07a62",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"https://ui.endpoints.huggingface.co/HF-test-lab/endpoints/boru-jina-embeddings-demo-ie\n"
]
}
],
"source": [
"dashboard_url = f'https://ui.endpoints.huggingface.co/{namespace}/endpoints/{ENDPOINT_NAME}'\n",
"print(dashboard_url)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "81096c6f-d12f-4781-84ec-9066cfa465b3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hit enter to continue with the notebook \n"
]
},
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"input(\"Hit enter to continue with the notebook\")"
]
},
{
"cell_type": "markdown",
"id": "847d524e-9aa6-4a6f-a275-8a552e289818",
"metadata": {},
"source": [
"We can see that it only took `$0.04` to pay for this!\n"
]
},
{
"cell_type": "markdown",
"id": "b953d5be-2494-4ff8-be42-9daf00c99c41",
"metadata": {},
"source": [
"\n",
"# Delete Endpoint\n",
"Now that we are done, we don't need our endpoint anymore. We can delete our endpoint programmatically. \n",
"\n",
"![Cost](https://huggingface.co/datasets/huggingface/cookbook-images/resolve/main/automatic_embedding_tei_inference_endpoints.png)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "c310c0f3-6f12-4d5c-838b-3a4c1f2e54ad",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Endpoint deleted successfully\n"
]
}
],
"source": [
"endpoint = endpoint.delete()\n",
"\n",
"if not endpoint:\n",
" print('Endpoint deleted successfully')\n",
"else:\n",
" print('Delete Endpoint in manually') "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|