File size: 39,690 Bytes
e2afaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "FNdZ-kD0l78P"
   },
   "source": [
    "---\n",
    "title: Single GPU Fine-tuning\n",
    "---\n",
    "\n",
    "# Fine-tuning a Code LLM on Custom Code on a single GPU\n",
    "\n",
    "_Authored by: [Maria Khalusova](https://github.com/MKhalusova)_\n",
    "\n",
    "Publicly available code LLMs such as Codex, StarCoder, and Code Llama are great at generating code that adheres to general programming principles and syntax, but they may not align with an organization's internal conventions, or be aware of proprietary libraries.\n",
    "\n",
    "In this notebook, we'll see show how you can fine-tune a code LLM on private code bases to enhance its contextual awareness and improve a model's usefulness to your organization's needs. Since the code LLMs are quite large, fine-tuning them in a traditional manner can be resource-draining. Worry not! We will show how you can optimize fine-tuning to fit on a single GPU.\n",
    "\n",
    "\n",
    "## Dataset\n",
    "\n",
    "For this example, we picked the top 10 Hugging Face public repositories on GitHub. We have excluded non-code files from the data, such as images, audio files, presentations, and so on. For Jupyter notebooks, we've kept only cells containing code. The resulting code is stored as a dataset that you can find on the Hugging Face Hub under [`smangrul/hf-stack-v1`](https://huggingface.co/datasets/smangrul/hf-stack-v1). It contains repo id, file path, and file content.\n",
    "\n",
    "\n",
    "## Model\n",
    "\n",
    "We'll finetune [`bigcode/starcoderbase-1b`](https://huggingface.co/bigcode/starcoderbase-1b), which is a 1B parameter model trained on 80+ programming languages. This is a gated model, so if you plan to run this notebook with this exact model, you'll need to gain access to it on the model's page. Log in to your Hugging Face account to do so:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "bPlCJYDK6vrF"
   },
   "outputs": [],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "WMVe_c8q43Qo"
   },
   "source": [
    "To get started, let's install all the necessary libraries. As you can see, in addition to `transformers` and `datasets`, we'll be using `peft`, `bitsandbytes`, and `flash-attn` to optimize the training.\n",
    "\n",
    "By employing parameter-efficient training techniques, we can run this notebook on a single A100 High-RAM GPU."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "Fp7i8WMCjKJG"
   },
   "outputs": [],
   "source": [
    "!pip install -q transformers datasets peft bitsandbytes flash-attn"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "16EdABzt3_Ig"
   },
   "source": [
    "Let's define some variables now. Feel free to play with these."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "hru3G-CLmqis"
   },
   "outputs": [],
   "source": [
    "MODEL=\"bigcode/starcoderbase-1b\" # Model checkpoint on the Hugging Face Hub\n",
    "DATASET=\"smangrul/hf-stack-v1\"   # Dataset on the Hugging Face Hub\n",
    "DATA_COLUMN=\"content\"            # Column name containing the code content\n",
    "\n",
    "SEQ_LENGTH=2048                  # Sequence length\n",
    "\n",
    "# Training arguments\n",
    "MAX_STEPS=2000                   # max_steps\n",
    "BATCH_SIZE=16                    # batch_size\n",
    "GR_ACC_STEPS=1                   # gradient_accumulation_steps\n",
    "LR=5e-4                          # learning_rate\n",
    "LR_SCHEDULER_TYPE=\"cosine\"       # lr_scheduler_type\n",
    "WEIGHT_DECAY=0.01                # weight_decay\n",
    "NUM_WARMUP_STEPS=30              # num_warmup_steps\n",
    "EVAL_FREQ=100                    # eval_freq\n",
    "SAVE_FREQ=100                    # save_freq\n",
    "LOG_FREQ=25                      # log_freq\n",
    "OUTPUT_DIR=\"peft-starcoder-lora-a100\" # output_dir\n",
    "BF16=True                        # bf16\n",
    "FP16=False                       # no_fp16\n",
    "\n",
    "# FIM trasformations arguments\n",
    "FIM_RATE=0.5                     # fim_rate\n",
    "FIM_SPM_RATE=0.5                 # fim_spm_rate\n",
    "\n",
    "# LORA\n",
    "LORA_R=8                         # lora_r\n",
    "LORA_ALPHA=32                    # lora_alpha\n",
    "LORA_DROPOUT=0.0                 # lora_dropout\n",
    "LORA_TARGET_MODULES=\"c_proj,c_attn,q_attn,c_fc,c_proj\"    # lora_target_modules\n",
    "\n",
    "# bitsandbytes config\n",
    "USE_NESTED_QUANT=True            # use_nested_quant\n",
    "BNB_4BIT_COMPUTE_DTYPE=\"bfloat16\"# bnb_4bit_compute_dtype\n",
    "\n",
    "SEED=0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "FyZSXTbJrcnC"
   },
   "outputs": [],
   "source": [
    "from transformers import (\n",
    "    AutoModelForCausalLM,\n",
    "    AutoTokenizer,\n",
    "    Trainer,\n",
    "    TrainingArguments,\n",
    "    logging,\n",
    "    set_seed,\n",
    "    BitsAndBytesConfig,\n",
    ")\n",
    "\n",
    "set_seed(SEED)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "pO7F5L5AtKo1"
   },
   "source": [
    "## Prepare the data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "1LmrIZqP0oUE"
   },
   "source": [
    "Begin by loading the data. As the dataset is likely to be quite large, make sure to enable the streaming mode. Streaming allows us to load the data progressively as we iterate over the dataset instead of downloading the whole dataset at once.\n",
    "\n",
    "We'll reserve the first 4000 examples as the validation set, and everything else will be the training data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "4oJZvZb-1J88"
   },
   "outputs": [],
   "source": [
    "from datasets import load_dataset\n",
    "import torch\n",
    "from tqdm import tqdm\n",
    "\n",
    "\n",
    "dataset = load_dataset(\n",
    "    DATASET,\n",
    "    data_dir=\"data\",\n",
    "    split=\"train\",\n",
    "    streaming=True,\n",
    ")\n",
    "\n",
    "valid_data = dataset.take(4000)\n",
    "train_data = dataset.skip(4000)\n",
    "train_data = train_data.shuffle(buffer_size=5000, seed=SEED)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "sLQ8t0LM2GR6"
   },
   "source": [
    "At this step, the dataset still contains raw data with code of arbitraty length. For training, we need inputs of fixed length. Let's create an Iterable dataset that would return constant-length chunks of tokens from a stream of text files.\n",
    "\n",
    "First, let's estimate the average number of characters per token in the dataset, which will help us later estimate the number of tokens in the text buffer later. By default, we'll only take 400 examples (`nb_examples`) from the dataset. Using only a subset of the entire dataset will reduce computational cost while still providing a reasonable estimate of the overall character-to-token ratio."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "KCiAvydztNsu",
    "outputId": "cabf7fd0-a922-4371-cbc6-60ee99ef7469"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 400/400 [00:10<00:00, 39.87it/s] "
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The character to token ratio of the dataset is: 2.43\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)\n",
    "\n",
    "def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400):\n",
    "    \"\"\"\n",
    "    Estimate the average number of characters per token in the dataset.\n",
    "    \"\"\"\n",
    "\n",
    "    total_characters, total_tokens = 0, 0\n",
    "    for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):\n",
    "        total_characters += len(example[data_column])\n",
    "        total_tokens += len(tokenizer(example[data_column]).tokens())\n",
    "\n",
    "    return total_characters / total_tokens\n",
    "\n",
    "\n",
    "chars_per_token = chars_token_ratio(train_data, tokenizer, DATA_COLUMN)\n",
    "print(f\"The character to token ratio of the dataset is: {chars_per_token:.2f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "6F13VGobB3Ma"
   },
   "source": [
    "The character-to-token ratio can also be used as an indicator of the quality of text tokenization. For instance, a character-to-token ratio of 1.0 would mean that each character is represented with a token, which is not very meaningful. This would indicate poor tokenization. In standard English text, one token is typically equivalent to approximately four characters, meaning the character-to-token ratio is around 4.0. We can expect a lower ratio in the code dataset, but generally speaking, a number between 2.0 and 3.5 can be considered good enough."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "rcwYFRPpwxea"
   },
   "source": [
    "**Optional FIM transformations**\n",
    "\n",
    "\n",
    "Autoregressive language models typically generate sequences from left to right. By applying the FIM transformations, the model can also learn to infill text.  Check out [\"Efficient Training of Language Models to Fill in the Middle\" paper](https://arxiv.org/pdf/2207.14255.pdf) to learn more about the technique.\n",
    "We'll define the FIM transformations here and will use them when creating the Iterable Dataset. However, if you want to omit transformations, feel free to set `fim_rate` to 0."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "zmejYvEKw1E-"
   },
   "outputs": [],
   "source": [
    "import functools\n",
    "import numpy as np\n",
    "\n",
    "\n",
    "# Helper function to get token ids of the special tokens for prefix, suffix and middle for FIM transformations.\n",
    "@functools.lru_cache(maxsize=None)\n",
    "def get_fim_token_ids(tokenizer):\n",
    "    try:\n",
    "        FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD = tokenizer.special_tokens_map[\"additional_special_tokens\"][1:5]\n",
    "        suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = (\n",
    "            tokenizer.vocab[tok] for tok in [FIM_SUFFIX, FIM_PREFIX, FIM_MIDDLE, FIM_PAD]\n",
    "        )\n",
    "    except KeyError:\n",
    "        suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = None, None, None, None\n",
    "    return suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id\n",
    "\n",
    "\n",
    "## Adapted from https://github.com/bigcode-project/Megatron-LM/blob/6c4bf908df8fd86b4977f54bf5b8bd4b521003d1/megatron/data/gpt_dataset.py\n",
    "def permute(\n",
    "    sample,\n",
    "    np_rng,\n",
    "    suffix_tok_id,\n",
    "    prefix_tok_id,\n",
    "    middle_tok_id,\n",
    "    pad_tok_id,\n",
    "    fim_rate=0.5,\n",
    "    fim_spm_rate=0.5,\n",
    "    truncate_or_pad=False,\n",
    "):\n",
    "    \"\"\"\n",
    "    Take in a sample (list of tokens) and perform a FIM transformation on it with a probability of fim_rate, using two FIM modes:\n",
    "    PSM and SPM (with a probability of fim_spm_rate).\n",
    "    \"\"\"\n",
    "\n",
    "    # The if condition will trigger with the probability of fim_rate\n",
    "    # This means FIM transformations will apply to samples with a probability of fim_rate\n",
    "    if np_rng.binomial(1, fim_rate):\n",
    "\n",
    "        # Split the sample into prefix, middle, and suffix, based on randomly generated indices stored in the boundaries list.\n",
    "        boundaries = list(np_rng.randint(low=0, high=len(sample) + 1, size=2))\n",
    "        boundaries.sort()\n",
    "\n",
    "        prefix = np.array(sample[: boundaries[0]], dtype=np.int64)\n",
    "        middle = np.array(sample[boundaries[0] : boundaries[1]], dtype=np.int64)\n",
    "        suffix = np.array(sample[boundaries[1] :], dtype=np.int64)\n",
    "\n",
    "        if truncate_or_pad:\n",
    "            # calculate the new total length of the sample, taking into account tokens indicating prefix, middle, and suffix\n",
    "            new_length = suffix.shape[0] + prefix.shape[0] + middle.shape[0] + 3\n",
    "            diff = new_length - len(sample)\n",
    "\n",
    "            # trancate or pad if there's a difference in length between the new length and the original\n",
    "            if diff > 0:\n",
    "                if suffix.shape[0] <= diff:\n",
    "                    return sample, np_rng\n",
    "                suffix = suffix[: suffix.shape[0] - diff]\n",
    "            elif diff < 0:\n",
    "                suffix = np.concatenate([suffix, np.full((-1 * diff), pad_tok_id)])\n",
    "\n",
    "        # With the probability of fim_spm_rateapply SPM variant of FIM transformations\n",
    "        # SPM: suffix, prefix, middle\n",
    "        if np_rng.binomial(1, fim_spm_rate):\n",
    "            new_sample = np.concatenate(\n",
    "                [\n",
    "                    [prefix_tok_id, suffix_tok_id],\n",
    "                    suffix,\n",
    "                    [middle_tok_id],\n",
    "                    prefix,\n",
    "                    middle,\n",
    "                ]\n",
    "            )\n",
    "        # Otherwise, apply the PSM variant of FIM transformations\n",
    "        # PSM: prefix, suffix, middle\n",
    "        else:\n",
    "\n",
    "            new_sample = np.concatenate(\n",
    "                [\n",
    "                    [prefix_tok_id],\n",
    "                    prefix,\n",
    "                    [suffix_tok_id],\n",
    "                    suffix,\n",
    "                    [middle_tok_id],\n",
    "                    middle,\n",
    "                ]\n",
    "            )\n",
    "    else:\n",
    "        # don't apply FIM transformations\n",
    "        new_sample = sample\n",
    "\n",
    "    return list(new_sample), np_rng\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "AwW5FviD9xBH"
   },
   "source": [
    "Let's define the `ConstantLengthDataset`, an Iterable dataset that will return constant-length chunks of tokens. To do so, we'll read a buffer of text from the original dataset until we hit the size limits and then apply tokenizer to convert the raw text into tokenized inputs. Optionally, we'll perform FIM transformations on some sequences (the proportion of sequences affected is controlled by `fim_rate`).\n",
    "\n",
    "Once defined, we can create instances of the `ConstantLengthDataset` from both training and validation data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "AgDW-692wzOl"
   },
   "outputs": [],
   "source": [
    "from torch.utils.data import IterableDataset\n",
    "from torch.utils.data.dataloader import DataLoader\n",
    "import random\n",
    "\n",
    "# Create an Iterable dataset that returns constant-length chunks of tokens from a stream of text files.\n",
    "\n",
    "class ConstantLengthDataset(IterableDataset):\n",
    "    \"\"\"\n",
    "    Iterable dataset that returns constant length chunks of tokens from stream of text files.\n",
    "        Args:\n",
    "            tokenizer (Tokenizer): The processor used for proccessing the data.\n",
    "            dataset (dataset.Dataset): Dataset with text files.\n",
    "            infinite (bool): If True the iterator is reset after dataset reaches end else stops.\n",
    "            seq_length (int): Length of token sequences to return.\n",
    "            num_of_sequences (int): Number of token sequences to keep in buffer.\n",
    "            chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.\n",
    "            fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM.\n",
    "            fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permuations that will use SPM.\n",
    "            seed (int): Seed for random number generator.\n",
    "    \"\"\"\n",
    "\n",
    "    def __init__(\n",
    "        self,\n",
    "        tokenizer,\n",
    "        dataset,\n",
    "        infinite=False,\n",
    "        seq_length=1024,\n",
    "        num_of_sequences=1024,\n",
    "        chars_per_token=3.6,\n",
    "        content_field=\"content\",\n",
    "        fim_rate=0.5,\n",
    "        fim_spm_rate=0.5,\n",
    "        seed=0,\n",
    "    ):\n",
    "        self.tokenizer = tokenizer\n",
    "        self.concat_token_id = tokenizer.eos_token_id\n",
    "        self.dataset = dataset\n",
    "        self.seq_length = seq_length\n",
    "        self.infinite = infinite\n",
    "        self.current_size = 0\n",
    "        self.max_buffer_size = seq_length * chars_per_token * num_of_sequences\n",
    "        self.content_field = content_field\n",
    "        self.fim_rate = fim_rate\n",
    "        self.fim_spm_rate = fim_spm_rate\n",
    "        self.seed = seed\n",
    "\n",
    "        (\n",
    "            self.suffix_tok_id,\n",
    "            self.prefix_tok_id,\n",
    "            self.middle_tok_id,\n",
    "            self.pad_tok_id,\n",
    "        ) = get_fim_token_ids(self.tokenizer)\n",
    "        if not self.suffix_tok_id and self.fim_rate > 0:\n",
    "            print(\"FIM is not supported by tokenizer, disabling FIM\")\n",
    "            self.fim_rate = 0\n",
    "\n",
    "    def __iter__(self):\n",
    "        iterator = iter(self.dataset)\n",
    "        more_examples = True\n",
    "        np_rng = np.random.RandomState(seed=self.seed)\n",
    "        while more_examples:\n",
    "            buffer, buffer_len = [], 0\n",
    "            while True:\n",
    "                if buffer_len >= self.max_buffer_size:\n",
    "                    break\n",
    "                try:\n",
    "                    buffer.append(next(iterator)[self.content_field])\n",
    "                    buffer_len += len(buffer[-1])\n",
    "                except StopIteration:\n",
    "                    if self.infinite:\n",
    "                        iterator = iter(self.dataset)\n",
    "                    else:\n",
    "                        more_examples = False\n",
    "                        break\n",
    "            tokenized_inputs = self.tokenizer(buffer, truncation=False)[\"input_ids\"]\n",
    "            all_token_ids = []\n",
    "\n",
    "            for tokenized_input in tokenized_inputs:\n",
    "                # optionally do FIM permutations\n",
    "                if self.fim_rate > 0:\n",
    "                    tokenized_input, np_rng = permute(\n",
    "                        tokenized_input,\n",
    "                        np_rng,\n",
    "                        self.suffix_tok_id,\n",
    "                        self.prefix_tok_id,\n",
    "                        self.middle_tok_id,\n",
    "                        self.pad_tok_id,\n",
    "                        fim_rate=self.fim_rate,\n",
    "                        fim_spm_rate=self.fim_spm_rate,\n",
    "                        truncate_or_pad=False,\n",
    "                    )\n",
    "\n",
    "                all_token_ids.extend(tokenized_input + [self.concat_token_id])\n",
    "            examples = []\n",
    "            for i in range(0, len(all_token_ids), self.seq_length):\n",
    "                input_ids = all_token_ids[i : i + self.seq_length]\n",
    "                if len(input_ids) == self.seq_length:\n",
    "                    examples.append(input_ids)\n",
    "            random.shuffle(examples)\n",
    "            for example in examples:\n",
    "                self.current_size += 1\n",
    "                yield {\n",
    "                    \"input_ids\": torch.LongTensor(example),\n",
    "                    \"labels\": torch.LongTensor(example),\n",
    "                }\n",
    "\n",
    "\n",
    "train_dataset = ConstantLengthDataset(\n",
    "        tokenizer,\n",
    "        train_data,\n",
    "        infinite=True,\n",
    "        seq_length=SEQ_LENGTH,\n",
    "        chars_per_token=chars_per_token,\n",
    "        content_field=DATA_COLUMN,\n",
    "        fim_rate=FIM_RATE,\n",
    "        fim_spm_rate=FIM_SPM_RATE,\n",
    "        seed=SEED,\n",
    ")\n",
    "eval_dataset = ConstantLengthDataset(\n",
    "        tokenizer,\n",
    "        valid_data,\n",
    "        infinite=False,\n",
    "        seq_length=SEQ_LENGTH,\n",
    "        chars_per_token=chars_per_token,\n",
    "        content_field=DATA_COLUMN,\n",
    "        fim_rate=FIM_RATE,\n",
    "        fim_spm_rate=FIM_SPM_RATE,\n",
    "        seed=SEED,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "rxev1sk6tRW9"
   },
   "source": [
    "## Prepare the model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "UCtWV-U42Eq_"
   },
   "source": [
    "Now that the data is prepared, it's time to load the model! We're going to load the quantized version of the model.\n",
    "\n",
    "This will allow us to reduce memory usage, as quantization represents data with fewer bits. We'll use the `bitsandbytes` library to quantize the model, as it has a nice integration with `transformers`. All we need to do is define a `bitsandbytes` config, and then use it when loading the model.\n",
    "\n",
    "There are different variants of 4bit quantization, but generally, we recommend using NF4 quantization for better performance (`bnb_4bit_quant_type=\"nf4\"`).\n",
    "\n",
    "The `bnb_4bit_use_double_quant` option adds a second quantization after the first one to save an additional 0.4 bits per parameter.\n",
    "\n",
    "To learn more about quantization, check out the [\"Making LLMs even more accessible with bitsandbytes, 4-bit quantization and QLoRA\" blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).\n",
    "\n",
    "Once defined, pass the config to the `from_pretrained` method to load the quantized version of the model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "XuwoX6U2DUvK"
   },
   "outputs": [],
   "source": [
    "from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training\n",
    "from peft.tuners.lora import LoraLayer\n",
    "\n",
    "load_in_8bit = False\n",
    "\n",
    "# 4-bit quantization\n",
    "compute_dtype = getattr(torch, BNB_4BIT_COMPUTE_DTYPE)\n",
    "\n",
    "bnb_config = BitsAndBytesConfig(\n",
    "    load_in_4bit=True,\n",
    "    bnb_4bit_quant_type=\"nf4\",\n",
    "    bnb_4bit_compute_dtype=compute_dtype,\n",
    "    bnb_4bit_use_double_quant=USE_NESTED_QUANT,\n",
    ")\n",
    "\n",
    "device_map = {\"\": 0}\n",
    "\n",
    "model = AutoModelForCausalLM.from_pretrained(\n",
    "        MODEL,\n",
    "        load_in_8bit=load_in_8bit,\n",
    "        quantization_config=bnb_config,\n",
    "        device_map=device_map,\n",
    "        use_cache=False,  # We will be using gradient checkpointing\n",
    "        trust_remote_code=True,\n",
    "        use_flash_attention_2=True,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "bO9e2FV8D8ZF"
   },
   "source": [
    "When using a quantized model for training, you need to call the `prepare_model_for_kbit_training()` function to preprocess the quantized model for training."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "Qb_eB4xzEDBk"
   },
   "outputs": [],
   "source": [
    "model = prepare_model_for_kbit_training(model)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "lmnLjPZpDVtg"
   },
   "source": [
    "Now that the quantized model is ready, we can set up a LoRA configuration. LoRA makes fine-tuning more efficient by drastically reducing the number of trainable parameters.\n",
    "\n",
    "To train a model using LoRA technique, we need to wrap the base model as a `PeftModel`. This involves definign LoRA configuration with `LoraConfig`, and wrapping the original model with `get_peft_model()` using the `LoraConfig`.\n",
    "\n",
    "To learn more about LoRA and its parameters, refer to [PEFT documentation](https://huggingface.co/docs/peft/conceptual_guides/lora)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "_pAUU2FR2Gey",
    "outputId": "63328c2b-e693-49b1-ce0a-3ca8722f852a"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "trainable params: 5,554,176 || all params: 1,142,761,472 || trainable%: 0.4860310866343243\n"
     ]
    }
   ],
   "source": [
    "# Set up lora\n",
    "peft_config = LoraConfig(\n",
    "    lora_alpha=LORA_ALPHA,\n",
    "    lora_dropout=LORA_DROPOUT,\n",
    "    r=LORA_R,\n",
    "    bias=\"none\",\n",
    "    task_type=\"CAUSAL_LM\",\n",
    "    target_modules=LORA_TARGET_MODULES.split(\",\"),\n",
    ")\n",
    "\n",
    "model = get_peft_model(model, peft_config)\n",
    "model.print_trainable_parameters()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "tHe7AElXzXVV"
   },
   "source": [
    "As you can see, by applying LoRA technique we will now need to train less than 1% of the parameters."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "T_CqVydc40IM"
   },
   "source": [
    "## Train the model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Q_iN2khjrbD3"
   },
   "source": [
    "Now that we have prepared the data, and optimized the model, we are ready to bring everything together to start the training.\n",
    "\n",
    "To instantiate a `Trainer`, you need to define the training configuration. The most important is the `TrainingArguments`, which is a class that contains all the attributes to configure the training.\n",
    "\n",
    "These are similar to any other kind of model training you may run, so we won't go into detail here."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "65QHS8l1tKQe"
   },
   "outputs": [],
   "source": [
    "train_data.start_iteration = 0\n",
    "\n",
    "\n",
    "training_args = TrainingArguments(\n",
    "    output_dir=f\"Your_HF_username/{OUTPUT_DIR}\",\n",
    "    dataloader_drop_last=True,\n",
    "    evaluation_strategy=\"steps\",\n",
    "    save_strategy=\"steps\",\n",
    "    max_steps=MAX_STEPS,\n",
    "    eval_steps=EVAL_FREQ,\n",
    "    save_steps=SAVE_FREQ,\n",
    "    logging_steps=LOG_FREQ,\n",
    "    per_device_train_batch_size=BATCH_SIZE,\n",
    "    per_device_eval_batch_size=BATCH_SIZE,\n",
    "    learning_rate=LR,\n",
    "    lr_scheduler_type=LR_SCHEDULER_TYPE,\n",
    "    warmup_steps=NUM_WARMUP_STEPS,\n",
    "    gradient_accumulation_steps=GR_ACC_STEPS,\n",
    "    gradient_checkpointing=True,\n",
    "    fp16=FP16,\n",
    "    bf16=BF16,\n",
    "    weight_decay=WEIGHT_DECAY,\n",
    "    push_to_hub=True,\n",
    "    include_tokens_per_second=True,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "kB_fLRex09ut"
   },
   "source": [
    "As a final step, instantiate the `Trainer` and call the `train` method.   "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 1000
    },
    "id": "rS3nVwhUC69O",
    "outputId": "61a5bdb2-b7d0-4aed-8290-4bf20c2ccd38"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Training...\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='2000' max='2000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [2000/2000 4:16:10, Epoch 1/9223372036854775807]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Step</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>100</td>\n",
       "      <td>5.524600</td>\n",
       "      <td>7.456872</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>200</td>\n",
       "      <td>5.617800</td>\n",
       "      <td>7.262190</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>300</td>\n",
       "      <td>5.129100</td>\n",
       "      <td>6.410039</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>400</td>\n",
       "      <td>5.052200</td>\n",
       "      <td>6.306774</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>500</td>\n",
       "      <td>5.202900</td>\n",
       "      <td>6.117062</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>600</td>\n",
       "      <td>4.654100</td>\n",
       "      <td>6.018349</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>700</td>\n",
       "      <td>5.100200</td>\n",
       "      <td>6.000355</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>800</td>\n",
       "      <td>5.049800</td>\n",
       "      <td>5.889457</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>900</td>\n",
       "      <td>4.541200</td>\n",
       "      <td>5.813823</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1000</td>\n",
       "      <td>5.000700</td>\n",
       "      <td>5.834208</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1100</td>\n",
       "      <td>5.026500</td>\n",
       "      <td>5.781939</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1200</td>\n",
       "      <td>4.411800</td>\n",
       "      <td>5.720596</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1300</td>\n",
       "      <td>4.782500</td>\n",
       "      <td>5.736376</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1400</td>\n",
       "      <td>4.980200</td>\n",
       "      <td>5.712276</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1500</td>\n",
       "      <td>4.368700</td>\n",
       "      <td>5.689637</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1600</td>\n",
       "      <td>4.884700</td>\n",
       "      <td>5.675920</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1700</td>\n",
       "      <td>4.914400</td>\n",
       "      <td>5.662421</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1800</td>\n",
       "      <td>4.248700</td>\n",
       "      <td>5.660122</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>1900</td>\n",
       "      <td>4.798400</td>\n",
       "      <td>5.664026</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2000</td>\n",
       "      <td>4.704200</td>\n",
       "      <td>5.655665</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "TrainOutput(global_step=2000, training_loss=4.885598585128784, metrics={'train_runtime': 15380.3075, 'train_samples_per_second': 2.081, 'train_steps_per_second': 0.13, 'train_tokens_per_second': 4261.033, 'total_flos': 4.0317260660736e+17, 'train_loss': 4.885598585128784, 'epoch': 1.0})"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer = Trainer(\n",
    "    model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset\n",
    ")\n",
    "\n",
    "print(\"Training...\")\n",
    "trainer.train()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "aAERlCnt1PEW"
   },
   "source": [
    "Finally, you can push the fine-tuned model to your Hub repository to share with your team."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "1h7_AUTTDwE1"
   },
   "outputs": [],
   "source": [
    "trainer.push_to_hub()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "KBVH7uFOM_UF"
   },
   "source": [
    "## Inference\n",
    "\n",
    "Once the model is uploaded to Hub, we can use it for inference. To do so we first initialize the original base model and its tokenizer. Next, we need to merge the fine-duned weights with the base model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "jtL37piINBFe"
   },
   "outputs": [],
   "source": [
    "from peft import PeftModel\n",
    "import torch\n",
    "\n",
    "# load the original model first\n",
    "tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)\n",
    "base_model = AutoModelForCausalLM.from_pretrained(\n",
    "    MODEL,\n",
    "    quantization_config=None,\n",
    "    device_map=None,\n",
    "    trust_remote_code=True,\n",
    "    torch_dtype=torch.bfloat16,\n",
    ").cuda()\n",
    "\n",
    "# merge fine-tuned weights with the base model\n",
    "peft_model_id = f\"Your_HF_username/{OUTPUT_DIR}\"\n",
    "model = PeftModel.from_pretrained(base_model, peft_model_id)\n",
    "model.merge_and_unload()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "3USQ2suvDi9M"
   },
   "source": [
    "Now we can use the merged model for inference. For convenience, we'll define a `get_code_completion` - feel free to experiment with text generation parameters!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "RoTGpNbjDeWI"
   },
   "outputs": [],
   "source": [
    "def get_code_completion(prefix, suffix):\n",
    "    text = prompt = f\"\"\"<fim_prefix>{prefix}<fim_suffix>{suffix}<fim_middle>\"\"\"\n",
    "    model.eval()\n",
    "    outputs = model.generate(\n",
    "        input_ids=tokenizer(text, return_tensors=\"pt\").input_ids.cuda(),\n",
    "        max_new_tokens=128,\n",
    "        temperature=0.2,\n",
    "        top_k=50,\n",
    "        top_p=0.95,\n",
    "        do_sample=True,\n",
    "        repetition_penalty=1.0,\n",
    "    )\n",
    "    return tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "0kMJiGDfDrBf"
   },
   "source": [
    "Now all we need to do to get code completion is call the `get_code_complete` function and pass the first few lines that we want to be completed as a prefix, and an empty string as a suffix."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "nXlco2_-YcvM",
    "outputId": "41c411ad-b7dc-4277-f975-c173888234bb"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "from peft import LoraConfig, TaskType, get_peft_model\n",
      "from transformers import AutoModelForCausalLM\n",
      "peft_config = LoraConfig(\n",
      "    task_type=TaskType.CAUSAL_LM,\n",
      "    r=8,\n",
      "    lora_alpha=32,\n",
      "    target_modules=[\"q_proj\", \"v_proj\"],\n",
      "    lora_dropout=0.1,\n",
      "    bias=\"none\",\n",
      "    modules_to_save=[\"q_proj\", \"v_proj\"],\n",
      "    inference_mode=False,\n",
      ")\n",
      "model = AutoModelForCausalLM.from_pretrained(\"gpt2\")\n",
      "model = get_peft_model(model, peft_config)\n",
      "model.print_trainable_parameters()\n"
     ]
    }
   ],
   "source": [
    "prefix = \"\"\"from peft import LoraConfig, TaskType, get_peft_model\n",
    "from transformers import AutoModelForCausalLM\n",
    "peft_config = LoraConfig(\n",
    "\"\"\"\n",
    "suffix =\"\"\"\"\"\"\n",
    "\n",
    "print(get_code_completion(prefix, suffix))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Ql2563kGlnmu"
   },
   "source": [
    "As someone who has just used the PEFT library earlier in this notebook, you can see that the generated result for creating a `LoraConfig` is rather good!\n",
    "\n",
    "If you go back to the cell where we instantiate the model for inference, and comment out the lines where we merge the fine-tuned weights, you can see what the original model would've generated for the exact same prefix:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "29xxp1eHTgJ9",
    "outputId": "c6d597a2-01da-4d25-a32f-3a551212c5b4"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "from peft import LoraConfig, TaskType, get_peft_model\n",
      "from transformers import AutoModelForCausalLM\n",
      "peft_config = LoraConfig(\n",
      "    model_name_or_path=\"facebook/wav2vec2-base-960h\",\n",
      "    num_labels=1,\n",
      "    num_features=1,\n",
      "    num_hidden_layers=1,\n",
      "    num_attention_heads=1,\n",
      "    num_hidden_layers_per_attention_head=1,\n",
      "    num_attention_heads_per_hidden_layer=1,\n",
      "    hidden_size=1024,\n",
      "    hidden_dropout_prob=0.1,\n",
      "    hidden_act=\"gelu\",\n",
      "    hidden_act_dropout_prob=0.1,\n",
      "    hidden\n"
     ]
    }
   ],
   "source": [
    "prefix = \"\"\"from peft import LoraConfig, TaskType, get_peft_model\n",
    "from transformers import AutoModelForCausalLM\n",
    "peft_config = LoraConfig(\n",
    "\"\"\"\n",
    "suffix =\"\"\"\"\"\"\n",
    "\n",
    "print(get_code_completion(prefix, suffix))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Pwy2ZC7U8Ema"
   },
   "source": [
    "While it is Python syntax, you can see that the original model has no understanding of what a `LoraConfig` should be doing."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "CATYE8pp2drQ"
   },
   "source": [
    "To learn how this kind of fine-tuning compares to full fine-tuning, and how to use a model like this as your copilot in VS Code via Inference Endpoints, or locally, check out the [\"Personal Copilot: Train Your Own Coding Assistant\" blog post](https://huggingface.co/blog/personal-copilot). This notebook complements the original blog post.\n"
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "gpuType": "A100",
   "machine_shape": "hm",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "name": "python3"
  },
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}