Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
from pandasai import Agent
|
5 |
+
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain_openai import ChatOpenAI
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.schema import Document
|
10 |
+
from datasets import load_dataset
|
11 |
+
import os
|
12 |
+
|
13 |
+
# Title
|
14 |
+
st.title("PandasAI Data Analysis Tool with RAG")
|
15 |
+
|
16 |
+
# Fetch API keys from environment variables
|
17 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
18 |
+
pandasai_api_key = os.getenv("PANDASAI_API_KEY")
|
19 |
+
|
20 |
+
# Dataset selection
|
21 |
+
st.sidebar.header("Dataset Input Options")
|
22 |
+
input_option = st.sidebar.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
23 |
+
|
24 |
+
# Initialize session state for the dataframe
|
25 |
+
if "df" not in st.session_state:
|
26 |
+
st.session_state.df = None
|
27 |
+
|
28 |
+
# Dataset loading logic
|
29 |
+
if input_option == "Use Hugging Face Dataset":
|
30 |
+
dataset_name = st.sidebar.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
|
31 |
+
if st.sidebar.button("Load Dataset"):
|
32 |
+
try:
|
33 |
+
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True)
|
34 |
+
st.session_state.df = pd.DataFrame(dataset)
|
35 |
+
st.sidebar.success(f"Dataset '{dataset_name}' loaded successfully!")
|
36 |
+
except Exception as e:
|
37 |
+
st.sidebar.error(f"Error loading dataset: {e}")
|
38 |
+
elif input_option == "Upload CSV File":
|
39 |
+
uploaded_file = st.sidebar.file_uploader("Upload CSV File:", type=["csv"])
|
40 |
+
if uploaded_file:
|
41 |
+
try:
|
42 |
+
st.session_state.df = pd.read_csv(uploaded_file)
|
43 |
+
st.sidebar.success("File uploaded successfully!")
|
44 |
+
except Exception as e:
|
45 |
+
st.sidebar.error(f"Error loading file: {e}")
|
46 |
+
|
47 |
+
# Show the loaded dataframe preview
|
48 |
+
if st.session_state.df is not None:
|
49 |
+
st.subheader("Dataset Preview")
|
50 |
+
st.dataframe(st.session_state.df.head(10))
|
51 |
+
|
52 |
+
# Set up PandasAI Agent
|
53 |
+
agent = Agent(st.session_state.df)
|
54 |
+
|
55 |
+
# Convert DataFrame to documents
|
56 |
+
documents = [
|
57 |
+
Document(
|
58 |
+
page_content=", ".join([f"{col}: {row[col]}" for col in st.session_state.df.columns]),
|
59 |
+
metadata={"index": index}
|
60 |
+
)
|
61 |
+
for index, row in st.session_state.df.iterrows()
|
62 |
+
]
|
63 |
+
|
64 |
+
# Set up RAG
|
65 |
+
embeddings = OpenAIEmbeddings()
|
66 |
+
vectorstore = FAISS.from_documents(documents, embeddings)
|
67 |
+
retriever = vectorstore.as_retriever()
|
68 |
+
qa_chain = RetrievalQA.from_chain_type(
|
69 |
+
llm=ChatOpenAI(),
|
70 |
+
chain_type="stuff",
|
71 |
+
retriever=retriever
|
72 |
+
)
|
73 |
+
|
74 |
+
# Create tabs for different functionality
|
75 |
+
tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"])
|
76 |
+
|
77 |
+
with tab1:
|
78 |
+
st.header("Data Analysis with PandasAI")
|
79 |
+
pandas_question = st.text_input("Ask a question about your data (PandasAI):")
|
80 |
+
if pandas_question:
|
81 |
+
result = agent.chat(pandas_question)
|
82 |
+
st.write("PandasAI Answer:", result)
|
83 |
+
|
84 |
+
with tab2:
|
85 |
+
st.header("Q&A with RAG")
|
86 |
+
rag_question = st.text_input("Ask a question about your data (RAG):")
|
87 |
+
if rag_question:
|
88 |
+
result = qa_chain.run(rag_question)
|
89 |
+
st.write("RAG Answer:", result)
|
90 |
+
|
91 |
+
with tab3:
|
92 |
+
st.header("Data Visualization")
|
93 |
+
viz_question = st.text_input("What kind of graph would you like to see? (e.g., 'Show a scatter plot of salary vs experience')")
|
94 |
+
if viz_question:
|
95 |
+
try:
|
96 |
+
result = agent.chat(viz_question)
|
97 |
+
|
98 |
+
# Convert the PandasAI result into executable code
|
99 |
+
import re
|
100 |
+
code_pattern = r'```python\n(.*?)\n```'
|
101 |
+
code_match = re.search(code_pattern, result, re.DOTALL)
|
102 |
+
|
103 |
+
if code_match:
|
104 |
+
viz_code = code_match.group(1)
|
105 |
+
# Modify the code to use 'px' instead of 'plt'
|
106 |
+
viz_code = viz_code.replace('plt.', 'px.')
|
107 |
+
viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)')
|
108 |
+
|
109 |
+
# Execute the code and display the graph
|
110 |
+
exec(viz_code)
|
111 |
+
st.plotly_chart(fig)
|
112 |
+
else:
|
113 |
+
st.write("Failed to generate a graph. Please try asking differently.")
|
114 |
+
except Exception as e:
|
115 |
+
st.write(f"An error occurred: {str(e)}")
|
116 |
+
st.write("Please try rephrasing your question.")
|
117 |
+
else:
|
118 |
+
st.warning("No dataset loaded. Please select a dataset input option from the sidebar.")
|
119 |
+
|
120 |
+
# Error handling for missing API keys
|
121 |
+
if not api_key:
|
122 |
+
st.error("Missing OpenAI API Key in environment variables.")
|
123 |
+
if not pandasai_api_key:
|
124 |
+
st.error("Missing PandasAI API Key in environment variables.")
|