File size: 7,745 Bytes
ec053c1
5ab2199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a38a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# to-do: Enable downloading multiple patent PDFs via corresponding links 
import sys
import os
import re
import shutil
import time
import streamlit as st
import nltk
import tempfile
import subprocess

# Pin NLTK to version 3.9.1
REQUIRED_NLTK_VERSION = "3.9.1"
subprocess.run([sys.executable, "-m", "pip", "install", f"nltk=={REQUIRED_NLTK_VERSION}"])

# Set up temporary directory for NLTK resources
nltk_data_path = os.path.join(tempfile.gettempdir(), "nltk_data")
os.makedirs(nltk_data_path, exist_ok=True)
nltk.data.path.append(nltk_data_path)

# Download 'punkt_tab' for compatibility
try:
    print("Ensuring NLTK 'punkt_tab' resource is downloaded...")
    nltk.download("punkt_tab", download_dir=nltk_data_path)
except Exception as e:
    print(f"Error downloading NLTK 'punkt_tab': {e}")
    raise e

sys.path.append(os.path.abspath("."))
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import NLTKTextSplitter
from patent_downloader import PatentDownloader

PERSISTED_DIRECTORY = tempfile.mkdtemp()

# Fetch API key securely from the environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
    st.error("Critical Error: OpenAI API key not found in the environment variables. Please configure it.")
    st.stop()

def check_poppler_installed():
    if not shutil.which("pdfinfo"):
        raise EnvironmentError(
            "Poppler is not installed or not in PATH. Install 'poppler-utils' for PDF processing."
        )

check_poppler_installed()

def load_docs(document_path):
    try:
        loader = UnstructuredPDFLoader(
            document_path,
            mode="elements",
            strategy="fast",
            ocr_languages=None
        )
        documents = loader.load()
        text_splitter = NLTKTextSplitter(chunk_size=1000)
        split_docs = text_splitter.split_documents(documents)
        
        # Filter metadata to only include str, int, float, or bool
        for doc in split_docs:
            if hasattr(doc, "metadata") and isinstance(doc.metadata, dict):
                doc.metadata = {
                    k: v for k, v in doc.metadata.items()
                    if isinstance(v, (str, int, float, bool))
                }
        return split_docs
    except Exception as e:
        st.error(f"Failed to load and process PDF: {e}")
        st.stop()

def already_indexed(vectordb, file_name):
    indexed_sources = set(
        x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
    )
    return file_name in indexed_sources

def load_chain(file_name=None):
    loaded_patent = st.session_state.get("LOADED_PATENT")

    vectordb = Chroma(
        persist_directory=PERSISTED_DIRECTORY,
        embedding_function=HuggingFaceEmbeddings(),
    )
    if loaded_patent == file_name or already_indexed(vectordb, file_name):
        st.write("✅ Already indexed.")
    else:
        vectordb.delete_collection()
        docs = load_docs(file_name)
        st.write("🔍 Number of Documents: ", len(docs))

        vectordb = Chroma.from_documents(
            docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
        )
        vectordb.persist()
        st.session_state["LOADED_PATENT"] = file_name

    memory = ConversationBufferMemory(
        memory_key="chat_history",
        return_messages=True,
        input_key="question",
        output_key="answer",
    )
    return ConversationalRetrievalChain.from_llm(
        OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
        vectordb.as_retriever(search_kwargs={"k": 3}),
        return_source_documents=False,
        memory=memory,
    )

def extract_patent_number(url):
    pattern = r"/patent/([A-Z]{2}\d+)"
    match = re.search(pattern, url)
    return match.group(1) if match else None

def download_pdf(patent_number):
    try:
        patent_downloader = PatentDownloader(verbose=True)
        output_path = patent_downloader.download(patents=patent_number, output_path=tempfile.gettempdir())
        return output_path[0]
    except Exception as e:
        st.error(f"Failed to download patent PDF: {e}")
        st.stop()

if __name__ == "__main__":
    st.set_page_config(
        page_title="Patent Chat: Google Patents Chat Demo",
        page_icon="📖",
        layout="wide",
        initial_sidebar_state="expanded",
    )
    st.header("📖 Patent Chat: Google Patents Chat Demo")

    # Fetch query parameters safely
    query_params = st.query_params
    default_patent_link = query_params.get("patent_link", "https://patents.google.com/patent/US8676427B1/en")
    
    # Input for Google Patent Link
    patent_link = st.text_area("Enter Google Patent Link:", value=default_patent_link, height=100)

    # Button to start processing
    if st.button("Load and Process Patent"):
        if not patent_link:
            st.warning("Please enter a Google patent link to proceed.")
            st.stop()

        patent_number = extract_patent_number(patent_link)
        if not patent_number:
            st.error("Invalid patent link format. Please provide a valid Google patent link.")
            st.stop()

        st.write(f"Patent number: **{patent_number}**")

        pdf_path = os.path.join(tempfile.gettempdir(), f"{patent_number}.pdf")
        if os.path.isfile(pdf_path):
            st.write("✅ File already downloaded.")
        else:
            st.write("📥 Downloading patent file...")
            pdf_path = download_pdf(patent_number)
            st.write(f"✅ File downloaded: {pdf_path}")

        st.write("🔄 Loading document into the system...")

        # Persist the chain in session state to prevent reloading
        if "chain" not in st.session_state or st.session_state.get("loaded_file") != pdf_path:
            st.session_state.chain = load_chain(pdf_path)
            st.session_state.loaded_file = pdf_path
            st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]

        st.success("🚀 Document successfully loaded! You can now start asking questions.")

    # Initialize messages if not already done
    if "messages" not in st.session_state:
        st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]

    # Display previous chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if "chain" in st.session_state:
        if user_input := st.chat_input("What is your question?"):
            st.session_state.messages.append({"role": "user", "content": user_input})
            with st.chat_message("user"):
                st.markdown(user_input)

            with st.chat_message("assistant"):
                message_placeholder = st.empty()
                full_response = ""

                with st.spinner("Generating response..."):
                    try:
                        assistant_response = st.session_state.chain({"question": user_input})
                        full_response = assistant_response["answer"]
                    except Exception as e:
                        full_response = f"An error occurred: {e}"

                message_placeholder.markdown(full_response)
                st.session_state.messages.append({"role": "assistant", "content": full_response})
    else:
        st.info("Press the 'Load and Process Patent' button to start processing.")