File size: 9,179 Bytes
ec053c1
5ab2199
 
 
 
 
8908600
5ab2199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8908600
 
 
 
 
 
 
 
 
 
 
 
 
5ab2199
 
 
 
 
 
 
 
 
 
cf5a94b
 
 
 
 
5ab2199
cf5a94b
 
 
 
 
 
 
 
 
 
f1054fc
5ab2199
 
cf5a94b
5ab2199
 
8908600
5ab2199
 
cf5a94b
5ab2199
 
 
 
cf5a94b
5ab2199
cf5a94b
5ab2199
 
 
8908600
cf5a94b
5ab2199
f1054fc
 
 
 
 
 
d54fc43
f1054fc
 
 
 
 
 
 
 
 
 
 
 
5ab2199
cf5a94b
 
 
5ab2199
 
f1054fc
 
 
 
5ab2199
cf5a94b
 
5ab2199
cf5a94b
5ab2199
 
 
 
cf5a94b
5ab2199
 
 
 
 
 
 
cf5a94b
5ab2199
 
 
 
 
 
c9a38a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# to-do: Enable downloading multiple patent PDFs via corresponding links 
import sys
import os
import re
import shutil
import time
import fitz 
import streamlit as st
import nltk
import tempfile
import subprocess

# Pin NLTK to version 3.9.1
REQUIRED_NLTK_VERSION = "3.9.1"
subprocess.run([sys.executable, "-m", "pip", "install", f"nltk=={REQUIRED_NLTK_VERSION}"])

# Set up temporary directory for NLTK resources
nltk_data_path = os.path.join(tempfile.gettempdir(), "nltk_data")
os.makedirs(nltk_data_path, exist_ok=True)
nltk.data.path.append(nltk_data_path)

# Download 'punkt_tab' for compatibility
try:
    print("Ensuring NLTK 'punkt_tab' resource is downloaded...")
    nltk.download("punkt_tab", download_dir=nltk_data_path)
except Exception as e:
    print(f"Error downloading NLTK 'punkt_tab': {e}")
    raise e

sys.path.append(os.path.abspath("."))
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import NLTKTextSplitter
from patent_downloader import PatentDownloader

PERSISTED_DIRECTORY = tempfile.mkdtemp()

# Fetch API key securely from the environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
    st.error("Critical Error: OpenAI API key not found in the environment variables. Please configure it.")
    st.stop()

def check_poppler_installed():
    if not shutil.which("pdfinfo"):
        raise EnvironmentError(
            "Poppler is not installed or not in PATH. Install 'poppler-utils' for PDF processing."
        )

check_poppler_installed()

def load_docs(document_path):
    try:
        loader = UnstructuredPDFLoader(
            document_path,
            mode="elements",
            strategy="fast",
            ocr_languages=None
        )
        documents = loader.load()
        text_splitter = NLTKTextSplitter(chunk_size=1000)
        split_docs = text_splitter.split_documents(documents)
        
        # Filter metadata to only include str, int, float, or bool
        for doc in split_docs:
            if hasattr(doc, "metadata") and isinstance(doc.metadata, dict):
                doc.metadata = {
                    k: v for k, v in doc.metadata.items()
                    if isinstance(v, (str, int, float, bool))
                }
        return split_docs
    except Exception as e:
        st.error(f"Failed to load and process PDF: {e}")
        st.stop()

def already_indexed(vectordb, file_name):
    indexed_sources = set(
        x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
    )
    return file_name in indexed_sources

def load_chain(file_name=None):
    loaded_patent = st.session_state.get("LOADED_PATENT")

    vectordb = Chroma(
        persist_directory=PERSISTED_DIRECTORY,
        embedding_function=HuggingFaceEmbeddings(),
    )
    if loaded_patent == file_name or already_indexed(vectordb, file_name):
        st.write("✅ Already indexed.")
    else:
        vectordb.delete_collection()
        docs = load_docs(file_name)
        st.write("🔍 Number of Documents: ", len(docs))

        vectordb = Chroma.from_documents(
            docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
        )
        vectordb.persist()
        st.session_state["LOADED_PATENT"] = file_name

    memory = ConversationBufferMemory(
        memory_key="chat_history",
        return_messages=True,
        input_key="question",
        output_key="answer",
    )
    return ConversationalRetrievalChain.from_llm(
        OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
        vectordb.as_retriever(search_kwargs={"k": 3}),
        return_source_documents=False,
        memory=memory,
    )

def extract_patent_number(url):
    pattern = r"/patent/([A-Z]{2}\d+)"
    match = re.search(pattern, url)
    return match.group(1) if match else None

def download_pdf(patent_number):
    try:
        patent_downloader = PatentDownloader(verbose=True)
        output_path = patent_downloader.download(patents=patent_number, output_path=tempfile.gettempdir())
        return output_path[0]
    except Exception as e:
        st.error(f"Failed to download patent PDF: {e}")
        st.stop()

def preview_pdf(pdf_path):
    """Generate and display the first page of the PDF as an image."""
    try:
        doc = fitz.open(pdf_path)  # Open PDF
        first_page = doc[0]  # Extract the first page
        pix = first_page.get_pixmap()  # Render page to a Pixmap (image)
        temp_image_path = os.path.join(tempfile.gettempdir(), "pdf_preview.png")
        pix.save(temp_image_path)  # Save the image temporarily
        return temp_image_path
    except Exception as e:
        st.error(f"Error generating PDF preview: {e}")
        return None

if __name__ == "__main__":
    st.set_page_config(
        page_title="Patent Chat: Google Patents Chat Demo",
        page_icon="📖",
        layout="wide",
        initial_sidebar_state="expanded",
    )
    st.header("📖 Patent Chat: Google Patents Chat Demo")

    # Input for Google Patent Link
    patent_link = st.text_area(
        "Enter Google Patent Link:", 
        value="https://patents.google.com/patent/US8676427B1/en", 
        height=100
    )

    # Initialize session state
    if "LOADED_PATENT" not in st.session_state:
        st.session_state.LOADED_PATENT = None
    if "pdf_preview" not in st.session_state:
        st.session_state.pdf_preview = None
    if "loaded_pdf_path" not in st.session_state:
        st.session_state.loaded_pdf_path = None
    if "chain" not in st.session_state:
        st.session_state.chain = None

    # Button to load and process patent
    if st.button("Load and Process Patent"):
        if not patent_link:
            st.warning("Please enter a valid Google patent link.")
            st.stop()

        # Extract patent number
        patent_number = extract_patent_number(patent_link)
        if not patent_number:
            st.error("Invalid patent link format.")
            st.stop()

        st.write(f"Patent number: **{patent_number}**")

        # File handling
        pdf_path = os.path.join(tempfile.gettempdir(), f"{patent_number}.pdf")
        if not os.path.isfile(pdf_path):
            st.write("📥 Downloading patent file...")
            pdf_path = download_pdf(patent_number)
            st.write(f"✅ File downloaded: {pdf_path}")
        else:
            st.write("✅ File already downloaded.")

        # Generate PDF preview
        st.write("🖼️ Generating PDF preview...")
        preview_image_path = preview_pdf(pdf_path)
        if preview_image_path:
            st.session_state.pdf_preview = preview_image_path
            st.image(preview_image_path, caption="First Page Preview", use_container_width=True)
        else:
            st.warning("Failed to generate PDF preview.")
            st.session_state.pdf_preview = None

        # Load the document into the system
        st.write("🔄 Loading document into the system...")
        st.session_state.chain = load_chain(pdf_path)
        st.session_state.LOADED_PATENT = patent_number
        st.session_state.loaded_pdf_path = pdf_path

        # Initialize messages AFTER processing
        st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]
        st.success("🚀 Document successfully loaded! You can now start asking questions.")

    # Display the PDF preview if available
    if st.session_state.pdf_preview:
        st.image(st.session_state.pdf_preview, caption="First Page Preview", use_container_width=True)

    # Display previous chat messages
    if "messages" in st.session_state:
        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])

    # User input for questions
    if st.session_state.chain:
        if user_input := st.chat_input("What is your question?"):
            # User message
            st.session_state.messages.append({"role": "user", "content": user_input})
            with st.chat_message("user"):
                st.markdown(user_input)

            # Assistant response
            with st.chat_message("assistant"):
                message_placeholder = st.empty()
                full_response = ""

                with st.spinner("Generating response..."):
                    try:
                        assistant_response = st.session_state.chain({"question": user_input})
                        full_response = assistant_response.get("answer", "I couldn't process that question.")
                    except Exception as e:
                        full_response = f"An error occurred: {e}"

                message_placeholder.markdown(full_response)
                st.session_state.messages.append({"role": "assistant", "content": full_response})
    else:
        st.info("Press the 'Load and Process Patent' button to start processing.")