Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -64,17 +64,37 @@ def load_docs(document_path):
|
|
64 |
documents = loader.load()
|
65 |
text_splitter = NLTKTextSplitter(chunk_size=1000)
|
66 |
split_docs = text_splitter.split_documents(documents)
|
67 |
-
|
68 |
-
# Debug: Check text chunking
|
69 |
-
st.write(f"🔍 Loaded Documents: {len(split_docs)}")
|
70 |
-
for i, doc in enumerate(split_docs[:5]): # Show first 5 chunks
|
71 |
-
st.write(f"Chunk {i + 1}: {doc.page_content[:200]}...")
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
except Exception as e:
|
75 |
st.error(f"Failed to load and process PDF: {e}")
|
76 |
st.stop()
|
77 |
|
|
|
78 |
def already_indexed(vectordb, file_name):
|
79 |
indexed_sources = set(
|
80 |
x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
|
|
|
64 |
documents = loader.load()
|
65 |
text_splitter = NLTKTextSplitter(chunk_size=1000)
|
66 |
split_docs = text_splitter.split_documents(documents)
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# Filter out metadata, very short, or redundant chunks
|
69 |
+
filtered_docs = []
|
70 |
+
seen_chunks = set()
|
71 |
+
|
72 |
+
for doc in split_docs:
|
73 |
+
content = doc.page_content.strip()
|
74 |
+
|
75 |
+
# Filter conditions: Ignore short chunks, common metadata, or duplicates
|
76 |
+
if (
|
77 |
+
len(content) < 50 or
|
78 |
+
"United States Patent" in content or
|
79 |
+
re.match(r"^\(?\d+\)?$", content) or # Matches lines like "(12)" or "10"
|
80 |
+
content in seen_chunks
|
81 |
+
):
|
82 |
+
continue
|
83 |
+
|
84 |
+
filtered_docs.append(doc)
|
85 |
+
seen_chunks.add(content)
|
86 |
+
|
87 |
+
# Debugging: Show filtered chunks
|
88 |
+
st.write(f"🔍 Filtered Documents: {len(filtered_docs)}")
|
89 |
+
for i, doc in enumerate(filtered_docs[:5]): # Show first 5 chunks
|
90 |
+
st.write(f"Filtered Chunk {i + 1}: {doc.page_content[:200]}...")
|
91 |
+
|
92 |
+
return filtered_docs
|
93 |
except Exception as e:
|
94 |
st.error(f"Failed to load and process PDF: {e}")
|
95 |
st.stop()
|
96 |
|
97 |
+
|
98 |
def already_indexed(vectordb, file_name):
|
99 |
indexed_sources = set(
|
100 |
x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
|