|
import streamlit as st |
|
import pandas as pd |
|
import sqlite3 |
|
import tempfile |
|
from fpdf import FPDF |
|
import threading |
|
import time |
|
import os |
|
import re |
|
import json |
|
from pathlib import Path |
|
import plotly.express as px |
|
from datetime import datetime, timezone |
|
from crewai import Agent, Crew, Process, Task |
|
from crewai.tools import tool |
|
from langchain_groq import ChatGroq |
|
from langchain_openai import ChatOpenAI |
|
from langchain.schema.output import LLMResult |
|
from langchain_community.tools.sql_database.tool import ( |
|
InfoSQLDatabaseTool, |
|
ListSQLDatabaseTool, |
|
QuerySQLCheckerTool, |
|
QuerySQLDataBaseTool, |
|
) |
|
from langchain_community.utilities.sql_database import SQLDatabase |
|
from datasets import load_dataset |
|
import tempfile |
|
|
|
st.title("SQL-RAG Using CrewAI π") |
|
st.write("Analyze datasets using natural language queries.") |
|
|
|
|
|
llm = None |
|
|
|
|
|
|
|
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True) |
|
|
|
|
|
groq_api_key = os.getenv("GROQ_API_KEY") |
|
openai_api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
if model_choice == "llama-3.3-70b": |
|
if not groq_api_key: |
|
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") |
|
llm = None |
|
else: |
|
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") |
|
elif model_choice == "GPT-4o": |
|
if not openai_api_key: |
|
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") |
|
llm = None |
|
else: |
|
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o") |
|
|
|
if llm is None: |
|
st.error("β LLM is not initialized. Please check your API keys and model selection.") |
|
|
|
|
|
if "df" not in st.session_state: |
|
st.session_state.df = None |
|
if "show_preview" not in st.session_state: |
|
st.session_state.show_preview = False |
|
|
|
|
|
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) |
|
|
|
if input_option == "Use Hugging Face Dataset": |
|
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries") |
|
if st.button("Load Dataset"): |
|
try: |
|
with st.spinner("Loading dataset..."): |
|
dataset = load_dataset(dataset_name, split="train") |
|
st.session_state.df = pd.DataFrame(dataset) |
|
st.session_state.show_preview = True |
|
st.success(f"Dataset '{dataset_name}' loaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error: {e}") |
|
|
|
elif input_option == "Upload CSV File": |
|
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) |
|
if uploaded_file: |
|
try: |
|
st.session_state.df = pd.read_csv(uploaded_file) |
|
st.session_state.show_preview = True |
|
st.success("File uploaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error loading file: {e}") |
|
|
|
|
|
if st.session_state.df is not None and st.session_state.show_preview: |
|
st.subheader("π Dataset Preview") |
|
st.dataframe(st.session_state.df.head()) |
|
|
|
|
|
|
|
def is_valid_suggestion(suggestion): |
|
chart_type = suggestion.get("chart_type", "").lower() |
|
|
|
if chart_type in ["bar", "line", "box", "scatter"]: |
|
return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"]) |
|
|
|
elif chart_type == "pie": |
|
return all(k in suggestion for k in ["chart_type", "x_axis"]) |
|
|
|
elif chart_type == "heatmap": |
|
return all(k in suggestion for k in ["chart_type", "x_axis", "y_axis"]) |
|
|
|
else: |
|
return False |
|
|
|
def ask_gpt4o_for_visualization(query, df, llm, retries=2): |
|
import json |
|
|
|
|
|
numeric_columns = df.select_dtypes(include='number').columns.tolist() |
|
categorical_columns = df.select_dtypes(exclude='number').columns.tolist() |
|
|
|
|
|
prompt = f""" |
|
Analyze the following query and suggest the most suitable visualization(s) using the dataset. |
|
**Query:** "{query}" |
|
**Dataset Overview:** |
|
- **Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'} |
|
- **Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'} |
|
Suggest visualizations in this exact JSON format: |
|
[ |
|
{{ |
|
"chdart_type": "bar/box/line/scatter/pie/heatmap", |
|
"x_axis": "categorical_or_time_column", |
|
"y_axis": "numeric_column", |
|
"group_by": "optional_column_for_grouping", |
|
"title": "Title of the chart", |
|
"description": "Why this chart is suitable" |
|
}} |
|
] |
|
**Query-Based Examples:** |
|
- **Query:** "What is the salary distribution across different job titles?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "box", |
|
"x_axis": "job_title", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "experience_level", |
|
"title": "Salary Distribution by Job Title and Experience", |
|
"description": "A box plot to show how salaries vary across different job titles and experience levels." |
|
}} |
|
- **Query:** "Show the average salary by company size and employment type." |
|
**Suggested Visualizations:** |
|
[ |
|
{{ |
|
"chart_type": "bar", |
|
"x_axis": "company_size", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "employment_type", |
|
"title": "Average Salary by Company Size and Employment Type", |
|
"description": "A grouped bar chart comparing average salaries across company sizes and employment types." |
|
}}, |
|
{{ |
|
"chart_type": "heatmap", |
|
"x_axis": "company_size", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "employment_type", |
|
"title": "Salary Heatmap by Company Size and Employment Type", |
|
"description": "A heatmap showing salary concentration across company sizes and employment types." |
|
}} |
|
] |
|
- **Query:** "How has the average salary changed over the years?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "line", |
|
"x_axis": "work_year", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "experience_level", |
|
"title": "Average Salary Trend Over Years", |
|
"description": "A line chart showing how the average salary has changed across different experience levels over the years." |
|
}} |
|
- **Query:** "What is the employee distribution by company location?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "pie", |
|
"x_axis": "company_location", |
|
"y_axis": null, |
|
"group_by": null, |
|
"title": "Employee Distribution by Company Location", |
|
"description": "A pie chart showing the distribution of employees across company locations." |
|
}} |
|
- **Query:** "Is there a relationship between remote work ratio and salary?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "scatter", |
|
"x_axis": "remote_ratio", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "experience_level", |
|
"title": "Remote Work Ratio vs Salary", |
|
"description": "A scatter plot to analyze the relationship between remote work ratio and salary." |
|
}} |
|
- **Query:** "Which job titles have the highest salaries across regions?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "heatmap", |
|
"x_axis": "job_title", |
|
"y_axis": "employee_residence", |
|
"group_by": null, |
|
"title": "Salary Heatmap by Job Title and Region", |
|
"description": "A heatmap showing the concentration of high-paying job titles across regions." |
|
}} |
|
Only suggest visualizations that logically match the query and dataset. |
|
""" |
|
|
|
for attempt in range(retries + 1): |
|
try: |
|
response = llm.generate(prompt) |
|
suggestions = json.loads(response) |
|
|
|
if isinstance(suggestions, list): |
|
valid_suggestions = [s for s in suggestions if is_valid_suggestion(s)] |
|
if valid_suggestions: |
|
return valid_suggestions |
|
else: |
|
st.warning("β οΈ GPT-4o did not suggest valid visualizations.") |
|
return None |
|
|
|
elif isinstance(suggestions, dict): |
|
if is_valid_suggestion(suggestions): |
|
return [suggestions] |
|
else: |
|
st.warning("β οΈ GPT-4o's suggestion is incomplete or invalid.") |
|
return None |
|
|
|
except json.JSONDecodeError: |
|
st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.") |
|
except Exception as e: |
|
st.error(f"β οΈ Error during GPT-4o call: {e}") |
|
|
|
if attempt < retries: |
|
st.info("π Retrying visualization suggestion...") |
|
|
|
st.error("β Failed to generate a valid visualization after multiple attempts.") |
|
return None |
|
|
|
|
|
def add_stats_to_figure(fig, df, y_axis, chart_type): |
|
""" |
|
Add relevant statistical annotations to the visualization |
|
based on the chart type. |
|
""" |
|
|
|
if not pd.api.types.is_numeric_dtype(df[y_axis]): |
|
st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}") |
|
return fig |
|
|
|
|
|
min_val = df[y_axis].min() |
|
max_val = df[y_axis].max() |
|
avg_val = df[y_axis].mean() |
|
median_val = df[y_axis].median() |
|
std_dev_val = df[y_axis].std() |
|
|
|
|
|
stats_text = ( |
|
f"π **Statistics**\n\n" |
|
f"- **Min:** ${min_val:,.2f}\n" |
|
f"- **Max:** ${max_val:,.2f}\n" |
|
f"- **Average:** ${avg_val:,.2f}\n" |
|
f"- **Median:** ${median_val:,.2f}\n" |
|
f"- **Std Dev:** ${std_dev_val:,.2f}" |
|
) |
|
|
|
|
|
if chart_type in ["bar", "line"]: |
|
|
|
fig.add_annotation( |
|
text=stats_text, |
|
xref="paper", yref="paper", |
|
x=1.02, y=1, |
|
showarrow=False, |
|
align="left", |
|
font=dict(size=12, color="black"), |
|
bordercolor="gray", |
|
borderwidth=1, |
|
bgcolor="rgba(255, 255, 255, 0.85)" |
|
) |
|
|
|
|
|
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right") |
|
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right") |
|
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right") |
|
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right") |
|
|
|
elif chart_type == "scatter": |
|
|
|
fig.add_annotation( |
|
text=stats_text, |
|
xref="paper", yref="paper", |
|
x=1.02, y=1, |
|
showarrow=False, |
|
align="left", |
|
font=dict(size=12, color="black"), |
|
bordercolor="gray", |
|
borderwidth=1, |
|
bgcolor="rgba(255, 255, 255, 0.85)" |
|
) |
|
|
|
elif chart_type == "box": |
|
|
|
pass |
|
|
|
elif chart_type == "pie": |
|
|
|
st.info("π Pie charts represent proportions. Additional stats are not applicable.") |
|
|
|
elif chart_type == "heatmap": |
|
|
|
st.info("π Heatmaps inherently reflect distribution. No additional stats added.") |
|
|
|
else: |
|
st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.") |
|
|
|
return fig |
|
|
|
|
|
|
|
def generate_visualization(suggestion, df): |
|
""" |
|
Generate a Plotly visualization based on GPT-4o's suggestion. |
|
If the Y-axis is missing, infer it intelligently. |
|
""" |
|
chart_type = suggestion.get("chart_type", "bar").lower() |
|
x_axis = suggestion.get("x_axis") |
|
y_axis = suggestion.get("y_axis") |
|
group_by = suggestion.get("group_by") |
|
|
|
|
|
if not y_axis: |
|
numeric_columns = df.select_dtypes(include='number').columns.tolist() |
|
|
|
|
|
if x_axis in numeric_columns: |
|
numeric_columns.remove(x_axis) |
|
|
|
|
|
priority_columns = ["salary_in_usd", "income", "earnings", "revenue"] |
|
for col in priority_columns: |
|
if col in numeric_columns: |
|
y_axis = col |
|
break |
|
|
|
|
|
if not y_axis and numeric_columns: |
|
y_axis = numeric_columns[0] |
|
|
|
|
|
if not x_axis or not y_axis: |
|
st.warning("β οΈ Unable to determine appropriate columns for visualization.") |
|
return None |
|
|
|
|
|
plotly_function = getattr(px, chart_type, None) |
|
if not plotly_function: |
|
st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.") |
|
return None |
|
|
|
|
|
plot_args = {"data_frame": df, "x": x_axis, "y": y_axis} |
|
if group_by and group_by in df.columns: |
|
plot_args["color"] = group_by |
|
|
|
try: |
|
|
|
fig = plotly_function(**plot_args) |
|
fig.update_layout( |
|
title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}", |
|
xaxis_title=x_axis.replace('_', ' ').title(), |
|
yaxis_title=y_axis.replace('_', ' ').title(), |
|
) |
|
|
|
|
|
fig = add_statistics_to_visualization(fig, df, y_axis, chart_type) |
|
|
|
return fig |
|
|
|
except Exception as e: |
|
st.error(f"β οΈ Failed to generate visualization: {e}") |
|
return None |
|
|
|
|
|
def generate_multiple_visualizations(suggestions, df): |
|
""" |
|
Generates one or more visualizations based on GPT-4o's suggestions. |
|
Handles both single and multiple suggestions. |
|
""" |
|
visualizations = [] |
|
|
|
for suggestion in suggestions: |
|
fig = generate_visualization(suggestion, df) |
|
if fig: |
|
|
|
fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"]) |
|
visualizations.append(fig) |
|
|
|
if not visualizations and suggestions: |
|
st.warning("β οΈ No valid visualization found. Displaying the most relevant one.") |
|
best_suggestion = suggestions[0] |
|
fig = generate_visualization(best_suggestion, df) |
|
fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"]) |
|
visualizations.append(fig) |
|
|
|
return visualizations |
|
|
|
|
|
def handle_visualization_suggestions(suggestions, df): |
|
""" |
|
Determines whether to generate a single or multiple visualizations. |
|
""" |
|
visualizations = [] |
|
|
|
|
|
if isinstance(suggestions, list) and len(suggestions) > 1: |
|
visualizations = generate_multiple_visualizations(suggestions, df) |
|
|
|
|
|
elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1): |
|
suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions |
|
fig = generate_visualization(suggestion, df) |
|
if fig: |
|
visualizations.append(fig) |
|
|
|
|
|
if not visualizations: |
|
st.warning("β οΈ Unable to generate any visualization based on the suggestion.") |
|
|
|
|
|
for fig in visualizations: |
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
def escape_markdown(text): |
|
|
|
text = str(text) |
|
|
|
escape_chars = r"(\*|_|`|~)" |
|
return re.sub(escape_chars, r"\\\1", text) |
|
|
|
|
|
|
|
if st.session_state.df is not None: |
|
temp_dir = tempfile.TemporaryDirectory() |
|
db_path = os.path.join(temp_dir.name, "data.db") |
|
connection = sqlite3.connect(db_path) |
|
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False) |
|
db = SQLDatabase.from_uri(f"sqlite:///{db_path}") |
|
|
|
@tool("list_tables") |
|
def list_tables() -> str: |
|
"""List all tables in the database.""" |
|
return ListSQLDatabaseTool(db=db).invoke("") |
|
|
|
@tool("tables_schema") |
|
def tables_schema(tables: str) -> str: |
|
"""Get the schema and sample rows for the specified tables.""" |
|
return InfoSQLDatabaseTool(db=db).invoke(tables) |
|
|
|
@tool("execute_sql") |
|
def execute_sql(sql_query: str) -> str: |
|
"""Execute a SQL query against the database and return the results.""" |
|
return QuerySQLDataBaseTool(db=db).invoke(sql_query) |
|
|
|
@tool("check_sql") |
|
def check_sql(sql_query: str) -> str: |
|
"""Validate the SQL query syntax and structure before execution.""" |
|
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) |
|
|
|
|
|
sql_dev = Agent( |
|
role="Senior Database Developer", |
|
goal="Extract data using optimized SQL queries.", |
|
backstory="An expert in writing optimized SQL queries for complex databases.", |
|
llm=llm, |
|
tools=[list_tables, tables_schema, execute_sql, check_sql], |
|
) |
|
|
|
data_analyst = Agent( |
|
role="Senior Data Analyst", |
|
goal="Analyze the data and produce insights.", |
|
backstory="A seasoned analyst who identifies trends and patterns in datasets.", |
|
llm=llm, |
|
) |
|
|
|
report_writer = Agent( |
|
role="Technical Report Writer", |
|
goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.", |
|
backstory="Specializes in detailed analytical reports without conclusions.", |
|
llm=llm, |
|
) |
|
|
|
conclusion_writer = Agent( |
|
role="Conclusion Specialist", |
|
goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.", |
|
backstory="An expert in crafting impactful and clear conclusions.", |
|
llm=llm, |
|
) |
|
|
|
|
|
extract_data = Task( |
|
description="Extract data based on the query: {query}.", |
|
expected_output="Database results matching the query.", |
|
agent=sql_dev, |
|
) |
|
|
|
analyze_data = Task( |
|
description="Analyze the extracted data for query: {query}.", |
|
expected_output="Key Insights and Analysis without any Introduction or Conclusion.", |
|
agent=data_analyst, |
|
context=[extract_data], |
|
) |
|
|
|
write_report = Task( |
|
description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.", |
|
expected_output="Markdown-formatted report excluding Conclusion.", |
|
agent=report_writer, |
|
context=[analyze_data], |
|
) |
|
|
|
write_conclusion = Task( |
|
description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries." |
|
"Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.", |
|
expected_output="Markdown-formatted Conclusion section with key insights and statistics.", |
|
agent=conclusion_writer, |
|
context=[analyze_data], |
|
) |
|
|
|
|
|
crew_report = Crew( |
|
agents=[sql_dev, data_analyst, report_writer], |
|
tasks=[extract_data, analyze_data, write_report], |
|
process=Process.sequential, |
|
verbose=True, |
|
) |
|
|
|
crew_conclusion = Crew( |
|
agents=[data_analyst, conclusion_writer], |
|
tasks=[write_conclusion], |
|
process=Process.sequential, |
|
verbose=True, |
|
) |
|
|
|
|
|
tab1 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"]) |
|
|
|
|
|
with tab1: |
|
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.") |
|
if st.button("Submit Query"): |
|
with st.spinner("Processing query..."): |
|
|
|
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."} |
|
report_result = crew_report.kickoff(inputs=report_inputs) |
|
|
|
|
|
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."} |
|
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs) |
|
|
|
|
|
|
|
st.markdown(report_result if report_result else "β οΈ No Report Generated.") |
|
|
|
|
|
|
|
|
|
|
|
st.markdown("### Visual Insights") |
|
|
|
|
|
|
|
|
|
st.markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.") |
|
|
|
|
|
|
|
with st.sidebar: |
|
st.header("π Reference:") |
|
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)") |
|
|