DrishtiSharma commited on
Commit
50e8a3a
Β·
verified Β·
1 Parent(s): d39b132

Delete mylab/gpt4o_dynamic_viz.py

Browse files
Files changed (1) hide show
  1. mylab/gpt4o_dynamic_viz.py +0 -472
mylab/gpt4o_dynamic_viz.py DELETED
@@ -1,472 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import sqlite3
4
- import tempfile
5
- from fpdf import FPDF
6
- import os
7
- import re
8
- import json
9
- from pathlib import Path
10
- import plotly.express as px
11
- from datetime import datetime, timezone
12
- from crewai import Agent, Crew, Process, Task
13
- from crewai.tools import tool
14
- from langchain_groq import ChatGroq
15
- from langchain_openai import ChatOpenAI
16
- from langchain.schema.output import LLMResult
17
- from langchain_community.tools.sql_database.tool import (
18
- InfoSQLDatabaseTool,
19
- ListSQLDatabaseTool,
20
- QuerySQLCheckerTool,
21
- QuerySQLDataBaseTool,
22
- )
23
- from langchain_community.utilities.sql_database import SQLDatabase
24
- from datasets import load_dataset
25
- import tempfile
26
-
27
- st.title("SQL-RAG Using CrewAI πŸš€")
28
- st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
29
-
30
- # Initialize LLM
31
- llm = None
32
-
33
- # Model Selection
34
- model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
35
-
36
- # API Key Validation and LLM Initialization
37
- groq_api_key = os.getenv("GROQ_API_KEY")
38
- openai_api_key = os.getenv("OPENAI_API_KEY")
39
-
40
- if model_choice == "llama-3.3-70b":
41
- if not groq_api_key:
42
- st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
43
- llm = None
44
- else:
45
- llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
46
- elif model_choice == "GPT-4o":
47
- if not openai_api_key:
48
- st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
49
- llm = None
50
- else:
51
- llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
52
-
53
- # Initialize session state for data persistence
54
- if "df" not in st.session_state:
55
- st.session_state.df = None
56
- if "show_preview" not in st.session_state:
57
- st.session_state.show_preview = False
58
-
59
- # Dataset Input
60
- input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
61
-
62
- if input_option == "Use Hugging Face Dataset":
63
- dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
64
- if st.button("Load Dataset"):
65
- try:
66
- with st.spinner("Loading dataset..."):
67
- dataset = load_dataset(dataset_name, split="train")
68
- st.session_state.df = pd.DataFrame(dataset)
69
- st.session_state.show_preview = True # Show preview after loading
70
- st.success(f"Dataset '{dataset_name}' loaded successfully!")
71
- except Exception as e:
72
- st.error(f"Error: {e}")
73
-
74
- elif input_option == "Upload CSV File":
75
- uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
76
- if uploaded_file:
77
- try:
78
- st.session_state.df = pd.read_csv(uploaded_file)
79
- st.session_state.show_preview = True # Show preview after loading
80
- st.success("File uploaded successfully!")
81
- except Exception as e:
82
- st.error(f"Error loading file: {e}")
83
-
84
- # Show Dataset Preview Only After Loading
85
- if st.session_state.df is not None and st.session_state.show_preview:
86
- st.subheader("πŸ“‚ Dataset Preview")
87
- st.dataframe(st.session_state.df.head())
88
-
89
- # Ask GPT-4o for Visualization Suggestions
90
- def ask_gpt4o_for_visualization(query, df, llm):
91
- columns = ', '.join(df.columns)
92
- prompt = f"""
93
- Analyze the query and suggest the best visualization.
94
- Query: "{query}"
95
- Available Columns: {columns}
96
- Respond in this JSON format:
97
- {{
98
- "chart_type": "bar/box/line/scatter",
99
- "x_axis": "column_name",
100
- "y_axis": "column_name",
101
- "group_by": "optional_column_name"
102
- }}
103
- """
104
- response = llm.generate(prompt)
105
- try:
106
- return json.loads(response)
107
- except json.JSONDecodeError:
108
- st.error("⚠️ GPT-4o failed to generate a valid suggestion.")
109
- return None
110
-
111
- # Dynamically generate Plotly visualizations based on GPT-4o suggestions
112
- def generate_visualization(suggestion, df):
113
- chart_type = suggestion.get("chart_type", "bar").lower()
114
- x_axis = suggestion.get("x_axis")
115
- y_axis = suggestion.get("y_axis")
116
- group_by = suggestion.get("group_by")
117
-
118
- # Dynamically determine the best Y-axis if GPT-4o doesn't suggest one
119
- if not y_axis:
120
- numeric_columns = df.select_dtypes(include='number').columns.tolist()
121
-
122
- if x_axis in numeric_columns:
123
- # Avoid using the same column for both axes
124
- numeric_columns.remove(x_axis)
125
-
126
- # Prioritize the first available numeric column for y-axis
127
- y_axis = numeric_columns[0] if numeric_columns else None
128
-
129
- # Ensure both axes are identified
130
- if not x_axis or not y_axis:
131
- st.warning("⚠️ Unable to determine relevant columns for visualization.")
132
- return None
133
-
134
- # Dynamically select the Plotly function
135
- plotly_function = getattr(px, chart_type, None)
136
-
137
- if not plotly_function:
138
- st.warning(f"⚠️ Unsupported chart type '{chart_type}' suggested by GPT-4o.")
139
- return None
140
-
141
- # Prepare dynamic plot arguments
142
- plot_args = {"data_frame": df, "x": x_axis, "y": y_axis}
143
- if group_by and group_by in df.columns:
144
- plot_args["color"] = group_by
145
-
146
- try:
147
- # Generate the dynamic visualization
148
- fig = plotly_function(**plot_args)
149
- fig.update_layout(
150
- title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}",
151
- xaxis_title=x_axis.replace('_', ' ').title(),
152
- yaxis_title=y_axis.replace('_', ' ').title(),
153
- )
154
-
155
- # Apply statistics intelligently
156
- fig = add_stats_to_figure(fig, df, y_axis, chart_type)
157
-
158
- return fig
159
-
160
- except Exception as e:
161
- st.error(f"⚠️ Failed to generate visualization: {e}")
162
- return None
163
-
164
-
165
- def add_stats_to_figure(fig, df, y_axis, chart_type):
166
- # Calculate statistics
167
- min_val = df[y_axis].min()
168
- max_val = df[y_axis].max()
169
- avg_val = df[y_axis].mean()
170
- median_val = df[y_axis].median()
171
- std_dev_val = df[y_axis].std()
172
-
173
- # Stats summary text
174
- stats_text = (
175
- f"πŸ“Š **Statistics**\n\n"
176
- f"- **Min:** ${min_val:,.2f}\n"
177
- f"- **Max:** ${max_val:,.2f}\n"
178
- f"- **Average:** ${avg_val:,.2f}\n"
179
- f"- **Median:** ${median_val:,.2f}\n"
180
- f"- **Std Dev:** ${std_dev_val:,.2f}"
181
- )
182
-
183
- # Charts suitable for stats annotations
184
- if chart_type in ["bar", "line", "scatter"]:
185
- # Add annotation box
186
- fig.add_annotation(
187
- text=stats_text,
188
- xref="paper", yref="paper",
189
- x=1.05, y=1,
190
- showarrow=False,
191
- align="left",
192
- font=dict(size=12, color="black"),
193
- bordercolor="black",
194
- borderwidth=1,
195
- bgcolor="rgba(255, 255, 255, 0.8)"
196
- )
197
-
198
- # Add horizontal lines for min, median, avg, max
199
- fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
200
- fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
201
- fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
202
- fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
203
-
204
- elif chart_type == "box":
205
- # Box plots already show distribution (no extra stats needed)
206
- pass
207
-
208
- elif chart_type == "pie":
209
- # Pie charts don't need statistical overlays
210
- st.info("πŸ“Š Pie charts focus on proportions. No additional stats displayed.")
211
-
212
- else:
213
- st.warning(f"⚠️ No stats added for unsupported chart type: {chart_type}")
214
-
215
- return fig
216
-
217
-
218
- # Function to create TXT file
219
- def create_text_report_with_viz_temp(report, conclusion, visualizations):
220
- content = f"### Analysis Report\n\n{report}\n\n### Visualizations\n"
221
-
222
- for i, fig in enumerate(visualizations, start=1):
223
- fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
224
- x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
225
- y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
226
-
227
- content += f"\n{i}. {fig_title}\n"
228
- content += f" - X-axis: {x_axis}\n"
229
- content += f" - Y-axis: {y_axis}\n"
230
-
231
- if fig.data:
232
- trace_types = set(trace.type for trace in fig.data)
233
- content += f" - Chart Type(s): {', '.join(trace_types)}\n"
234
- else:
235
- content += " - No data available in this visualization.\n"
236
-
237
- content += f"\n\n\n{conclusion}"
238
-
239
- with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as temp_txt:
240
- temp_txt.write(content)
241
- return temp_txt.name
242
-
243
-
244
-
245
- # Function to create PDF with report text and visualizations
246
- def create_pdf_report_with_viz(report, conclusion, visualizations):
247
- pdf = FPDF()
248
- pdf.set_auto_page_break(auto=True, margin=15)
249
- pdf.add_page()
250
- pdf.set_font("Arial", size=12)
251
-
252
- # Title
253
- pdf.set_font("Arial", style="B", size=18)
254
- pdf.cell(0, 10, "πŸ“Š Analysis Report", ln=True, align="C")
255
- pdf.ln(10)
256
-
257
- # Report Content
258
- pdf.set_font("Arial", style="B", size=14)
259
- pdf.cell(0, 10, "Analysis", ln=True)
260
- pdf.set_font("Arial", size=12)
261
- pdf.multi_cell(0, 10, report)
262
-
263
- pdf.ln(10)
264
- pdf.set_font("Arial", style="B", size=14)
265
- pdf.cell(0, 10, "Conclusion", ln=True)
266
- pdf.set_font("Arial", size=12)
267
- pdf.multi_cell(0, 10, conclusion)
268
-
269
- # Add Visualizations
270
- pdf.add_page()
271
- pdf.set_font("Arial", style="B", size=16)
272
- pdf.cell(0, 10, "πŸ“ˆ Visualizations", ln=True)
273
- pdf.ln(5)
274
-
275
- with tempfile.TemporaryDirectory() as temp_dir:
276
- for i, fig in enumerate(visualizations, start=1):
277
- fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
278
- x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
279
- y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
280
-
281
- # Save each visualization as a PNG image
282
- img_path = os.path.join(temp_dir, f"viz_{i}.png")
283
- fig.write_image(img_path)
284
-
285
- # Insert Title and Description
286
- pdf.set_font("Arial", style="B", size=14)
287
- pdf.multi_cell(0, 10, f"{i}. {fig_title}")
288
- pdf.set_font("Arial", size=12)
289
- pdf.multi_cell(0, 10, f"X-axis: {x_axis} | Y-axis: {y_axis}")
290
- pdf.ln(3)
291
-
292
- # Embed Visualization
293
- pdf.image(img_path, w=170)
294
- pdf.ln(10)
295
-
296
- # Save PDF
297
- temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
298
- pdf.output(temp_pdf.name)
299
-
300
- return temp_pdf
301
-
302
- def escape_markdown(text):
303
- # Ensure text is a string
304
- text = str(text)
305
- # Escape Markdown characters: *, _, `, ~
306
- escape_chars = r"(\*|_|`|~)"
307
- return re.sub(escape_chars, r"\\\1", text)
308
-
309
- # SQL-RAG Analysis
310
- if st.session_state.df is not None:
311
- temp_dir = tempfile.TemporaryDirectory()
312
- db_path = os.path.join(temp_dir.name, "data.db")
313
- connection = sqlite3.connect(db_path)
314
- st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
315
- db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
316
-
317
- @tool("list_tables")
318
- def list_tables() -> str:
319
- """List all tables in the database."""
320
- return ListSQLDatabaseTool(db=db).invoke("")
321
-
322
- @tool("tables_schema")
323
- def tables_schema(tables: str) -> str:
324
- """Get the schema and sample rows for the specified tables."""
325
- return InfoSQLDatabaseTool(db=db).invoke(tables)
326
-
327
- @tool("execute_sql")
328
- def execute_sql(sql_query: str) -> str:
329
- """Execute a SQL query against the database and return the results."""
330
- return QuerySQLDataBaseTool(db=db).invoke(sql_query)
331
-
332
- @tool("check_sql")
333
- def check_sql(sql_query: str) -> str:
334
- """Validate the SQL query syntax and structure before execution."""
335
- return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
336
-
337
- # Agents for SQL data extraction and analysis
338
- sql_dev = Agent(
339
- role="Senior Database Developer",
340
- goal="Extract data using optimized SQL queries.",
341
- backstory="An expert in writing optimized SQL queries for complex databases.",
342
- llm=llm,
343
- tools=[list_tables, tables_schema, execute_sql, check_sql],
344
- )
345
-
346
- data_analyst = Agent(
347
- role="Senior Data Analyst",
348
- goal="Analyze the data and produce insights.",
349
- backstory="A seasoned analyst who identifies trends and patterns in datasets.",
350
- llm=llm,
351
- )
352
-
353
- report_writer = Agent(
354
- role="Technical Report Writer",
355
- goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
356
- backstory="Specializes in detailed analytical reports without conclusions.",
357
- llm=llm,
358
- )
359
-
360
- conclusion_writer = Agent(
361
- role="Conclusion Specialist",
362
- goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
363
- backstory="An expert in crafting impactful and clear conclusions.",
364
- llm=llm,
365
- )
366
-
367
- # Define tasks for report and conclusion
368
- extract_data = Task(
369
- description="Extract data based on the query: {query}.",
370
- expected_output="Database results matching the query.",
371
- agent=sql_dev,
372
- )
373
-
374
- analyze_data = Task(
375
- description="Analyze the extracted data for query: {query}.",
376
- expected_output="Key Insights and Analysis without any Introduction or Conclusion.",
377
- agent=data_analyst,
378
- context=[extract_data],
379
- )
380
-
381
- write_report = Task(
382
- description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
383
- expected_output="Markdown-formatted report excluding Conclusion.",
384
- agent=report_writer,
385
- context=[analyze_data],
386
- )
387
-
388
- write_conclusion = Task(
389
- description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries."
390
- "Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.",
391
- expected_output="Markdown-formatted Conclusion section with key insights and statistics.",
392
- agent=conclusion_writer,
393
- context=[analyze_data],
394
- )
395
-
396
-
397
-
398
- # Separate Crews for report and conclusion
399
- crew_report = Crew(
400
- agents=[sql_dev, data_analyst, report_writer],
401
- tasks=[extract_data, analyze_data, write_report],
402
- process=Process.sequential,
403
- verbose=True,
404
- )
405
-
406
- crew_conclusion = Crew(
407
- agents=[data_analyst, conclusion_writer],
408
- tasks=[write_conclusion],
409
- process=Process.sequential,
410
- verbose=True,
411
- )
412
-
413
- # Tabs for Query Results and Visualizations
414
- tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])
415
-
416
- # Query Insights + Visualization
417
- with tab1:
418
- query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
419
- if st.button("Submit Query"):
420
- with st.spinner("Processing query..."):
421
- # Step 1: Generate the analysis report
422
- report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
423
- report_result = crew_report.kickoff(inputs=report_inputs)
424
-
425
- # Step 2: Generate only the concise conclusion
426
- conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
427
- conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
428
-
429
- # Step 3: Display the report
430
- #st.markdown("### Analysis Report:")
431
- st.markdown(report_result if report_result else "⚠️ No Report Generated.")
432
-
433
- # Step 4: Generate Visualizations
434
-
435
-
436
- # Step 5: Insert Visual Insights
437
- st.markdown("### Visual Insights")
438
-
439
-
440
- # Step 6: Display Concise Conclusion
441
- #st.markdown("#### Conclusion")
442
-
443
- safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "⚠️ No Conclusion Generated.")
444
- st.markdown(safe_conclusion)
445
-
446
- # Full Data Visualization Tab
447
- with tab2:
448
- st.subheader("πŸ“Š Comprehensive Data Visualizations")
449
-
450
- fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
451
- st.plotly_chart(fig1)
452
-
453
- fig2 = px.bar(
454
- st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
455
- x="experience_level", y="salary_in_usd",
456
- title="Average Salary by Experience Level"
457
- )
458
- st.plotly_chart(fig2)
459
-
460
- fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
461
- title="Salary Distribution by Employment Type")
462
- st.plotly_chart(fig3)
463
-
464
- temp_dir.cleanup()
465
- else:
466
- st.info("Please load a dataset to proceed.")
467
-
468
-
469
- # Sidebar Reference
470
- with st.sidebar:
471
- st.header("πŸ“š Reference:")
472
- st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")