Aryanshanu commited on
Commit
07aca8f
·
verified ·
1 Parent(s): df4b8b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -24
app.py CHANGED
@@ -1,12 +1,12 @@
1
  import gradio as gr
 
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -35,30 +35,58 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ import yfinance as yf
4
  from huggingface_hub import InferenceClient
5
 
6
+ # Initialize the Inference Client for the chatbot
 
 
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+ # Function for the chatbot response
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
 
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
 
38
  response += token
39
  yield response
40
 
41
+ # Function for the trading screener
42
+ def trading_screener(price_threshold, volume_threshold):
43
+ stocks = ["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA"]
44
+ data = []
45
+
46
+ for stock in stocks:
47
+ ticker = yf.Ticker(stock)
48
+ hist = ticker.history(period="1d")
49
+ current_price = hist['Close'].iloc[-1]
50
+ avg_volume = hist['Volume'].mean()
51
+ data.append({"Stock": stock, "Price": current_price, "Avg Volume": avg_volume})
52
+
53
+ df = pd.DataFrame(data)
54
+ filtered_df = df[(df['Price'] > price_threshold) & (df['Avg Volume'] > volume_threshold)]
55
+ return filtered_df
56
 
57
+ # Create the Gradio interface
58
+ with gr.Blocks() as demo:
59
+ gr.Markdown("# Trading Screener and Chatbot")
60
+
61
+ # Trading Screener Section
62
+ with gr.Row():
63
+ with gr.Column():
64
+ gr.Markdown("## Trading Screener")
65
+ price_threshold = gr.Number(label="Price Threshold", value=100.0)
66
+ volume_threshold = gr.Number(label="Volume Threshold", value=1000000)
67
+ submit_btn = gr.Button("Run Screener")
68
+ output_df = gr.Dataframe(label="Filtered Stocks")
69
+
70
+ submit_btn.click(fn=trading_screener, inputs=[price_threshold, volume_threshold], outputs=output_df)
 
 
 
 
71
 
72
+ # Chatbot Section
73
+ gr.Markdown("## Chatbot")
74
+ chat_interface = gr.ChatInterface(
75
+ respond,
76
+ additional_inputs=[
77
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
78
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
79
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
80
+ gr.Slider(
81
+ minimum=0.1,
82
+ maximum=1.0,
83
+ value=0.95,
84
+ step=0.05,
85
+ label="Top-p (nucleus sampling)",
86
+ ),
87
+ ],
88
+ )
89
 
90
+ # Launch the app
91
  if __name__ == "__main__":
92
+ demo.launch()