|
import spaces |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import gradio as gr |
|
from ormbg import ORMBG |
|
from PIL import Image |
|
|
|
model_path = "ormbg.pth" |
|
|
|
|
|
net = ORMBG() |
|
net.load_state_dict(torch.load(model_path, map_location="cpu")) |
|
net.eval() |
|
|
|
|
|
def resize_image(image): |
|
image = image.convert("RGB") |
|
model_input_size = (1024, 1024) |
|
image = image.resize(model_input_size, Image.BILINEAR) |
|
return image |
|
|
|
|
|
@spaces.GPU |
|
@torch.inference_mode() |
|
def inference(image): |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
net.to(device) |
|
|
|
|
|
orig_image = Image.fromarray(image) |
|
w, h = orig_image.size |
|
image = resize_image(orig_image) |
|
im_np = np.array(image) |
|
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) |
|
im_tensor = torch.unsqueeze(im_tensor, 0) |
|
im_tensor = torch.divide(im_tensor, 255.0) |
|
|
|
if torch.cuda.is_available(): |
|
im_tensor = im_tensor.to(device) |
|
|
|
|
|
result = net(im_tensor) |
|
|
|
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result - mi) / (ma - mi) |
|
|
|
im_array = (result * 255).cpu().data.numpy().astype(np.uint8) |
|
pil_im = Image.fromarray(np.squeeze(im_array)) |
|
|
|
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) |
|
new_im.paste(orig_image, mask=pil_im) |
|
|
|
return new_im |
|
|
|
|
|
|
|
title = "Open Remove Background Model (ormbg)" |
|
description = r""" |
|
This model is a <strong>fully open-source background remover</strong> optimized for images with humans. It is based on [Highly Accurate Dichotomous Image Segmentation research](https://github.com/xuebinqin/DIS). The model was trained with the synthetic <a href="https://huggingface.co/datasets/schirrmacher/humans">Human Segmentation Dataset</a>, <a href="https://paperswithcode.com/dataset/p3m-10k">P3M-10k</a> and <a href="https://paperswithcode.com/dataset/aim-500">AIM-500</a>. |
|
|
|
If you identify cases where the model fails, <a href='https://huggingface.co/schirrmacher/ormbg/discussions' target='_blank'>upload your examples</a>! |
|
|
|
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Model card</a>: find inference code, training information, tutorials |
|
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Dataset</a>: see training images, segmentation data, backgrounds |
|
- <a href='https://huggingface.co/schirrmacher/ormbg\#research' target='_blank'>Research</a>: see current approach for improvements |
|
""" |
|
|
|
examples = [ |
|
"example01.jpeg", |
|
"example02.jpeg", |
|
"example03.jpeg", |
|
] |
|
|
|
demo = gr.Interface( |
|
fn=inference, |
|
inputs="image", |
|
outputs="image", |
|
examples=examples, |
|
title=title, |
|
description=description, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=False, allowed_paths=["./"]) |
|
|