Spaces:
Runtime error
Runtime error
import argparse | |
import math | |
import os | |
import platform | |
import subprocess | |
import cv2 | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
import audio | |
# from face_detect import face_rect | |
from models import Wav2Lip | |
from batch_face import RetinaFace | |
from time import time | |
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models') | |
parser.add_argument('--checkpoint_path', type=str, | |
help='Name of saved checkpoint to load weights from', required=True) | |
parser.add_argument('--face', type=str, | |
help='Filepath of video/image that contains faces to use', required=True) | |
parser.add_argument('--audio', type=str, | |
help='Filepath of video/audio file to use as raw audio source', required=True) | |
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.', | |
default='results/result_voice.mp4') | |
parser.add_argument('--static', type=bool, | |
help='If True, then use only first video frame for inference', default=False) | |
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', | |
default=25., required=False) | |
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0], | |
help='Padding (top, bottom, left, right). Please adjust to include chin at least') | |
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=128) | |
parser.add_argument('--resize_factor', default=1, type=int, | |
help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p') | |
parser.add_argument('--out_height', default=720, type=int, | |
help='Output video height. Best results are obtained at 480 or 720') | |
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], | |
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' | |
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width') | |
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], | |
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.' | |
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).') | |
parser.add_argument('--rotate', default=False, action='store_true', | |
help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.' | |
'Use if you get a flipped result, despite feeding a normal looking video') | |
parser.add_argument('--nosmooth', default=False, action='store_true', | |
help='Prevent smoothing face detections over a short temporal window') | |
def get_smoothened_boxes(boxes, T): | |
for i in range(len(boxes)): | |
if i + T > len(boxes): | |
window = boxes[len(boxes) - T:] | |
else: | |
window = boxes[i : i + T] | |
boxes[i] = np.mean(window, axis=0) | |
return boxes | |
def face_detect(images): | |
results = [] | |
pady1, pady2, padx1, padx2 = args.pads | |
s = time() | |
for image, rect in zip(images, face_rect(images)): | |
if rect is None: | |
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected. | |
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') | |
y1 = max(0, rect[1] - pady1) | |
y2 = min(image.shape[0], rect[3] + pady2) | |
x1 = max(0, rect[0] - padx1) | |
x2 = min(image.shape[1], rect[2] + padx2) | |
results.append([x1, y1, x2, y2]) | |
print('face detect time:', time() - s) | |
boxes = np.array(results) | |
if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5) | |
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] | |
return results | |
def datagen(frames, mels): | |
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] | |
if args.box[0] == -1: | |
if not args.static: | |
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection | |
else: | |
face_det_results = face_detect([frames[0]]) | |
else: | |
print('Using the specified bounding box instead of face detection...') | |
y1, y2, x1, x2 = args.box | |
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames] | |
for i, m in enumerate(mels): | |
idx = 0 if args.static else i%len(frames) | |
frame_to_save = frames[idx].copy() | |
face, coords = face_det_results[idx].copy() | |
face = cv2.resize(face, (args.img_size, args.img_size)) | |
img_batch.append(face) | |
mel_batch.append(m) | |
frame_batch.append(frame_to_save) | |
coords_batch.append(coords) | |
if len(img_batch) >= args.wav2lip_batch_size: | |
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) | |
img_masked = img_batch.copy() | |
img_masked[:, args.img_size//2:] = 0 | |
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. | |
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) | |
yield img_batch, mel_batch, frame_batch, coords_batch | |
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] | |
if len(img_batch) > 0: | |
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) | |
img_masked = img_batch.copy() | |
img_masked[:, args.img_size//2:] = 0 | |
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. | |
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) | |
yield img_batch, mel_batch, frame_batch, coords_batch | |
mel_step_size = 16 | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print('Using {} for inference.'.format(device)) | |
def _load(checkpoint_path): | |
if device == 'cuda': | |
checkpoint = torch.load(checkpoint_path) | |
else: | |
checkpoint = torch.load(checkpoint_path, | |
map_location=lambda storage, loc: storage) | |
return checkpoint | |
def load_model(path): | |
model = Wav2Lip() | |
print("Load checkpoint from: {}".format(path)) | |
checkpoint = _load(path) | |
s = checkpoint["state_dict"] | |
new_s = {} | |
for k, v in s.items(): | |
new_s[k.replace('module.', '')] = v | |
model.load_state_dict(new_s) | |
model = model.to(device) | |
return model.eval() | |
def main(): | |
args.img_size = 96 | |
if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: | |
args.static = True | |
if not os.path.isfile(args.face): | |
raise ValueError('--face argument must be a valid path to video/image file') | |
elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: | |
full_frames = [cv2.imread(args.face)] | |
fps = args.fps | |
else: | |
video_stream = cv2.VideoCapture(args.face) | |
fps = video_stream.get(cv2.CAP_PROP_FPS) | |
print('Reading video frames...') | |
full_frames = [] | |
while 1: | |
still_reading, frame = video_stream.read() | |
if not still_reading: | |
video_stream.release() | |
break | |
aspect_ratio = frame.shape[1] / frame.shape[0] | |
frame = cv2.resize(frame, (int(args.out_height * aspect_ratio), args.out_height)) | |
# if args.resize_factor > 1: | |
# frame = cv2.resize(frame, (frame.shape[1]//args.resize_factor, frame.shape[0]//args.resize_factor)) | |
if args.rotate: | |
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) | |
y1, y2, x1, x2 = args.crop | |
if x2 == -1: x2 = frame.shape[1] | |
if y2 == -1: y2 = frame.shape[0] | |
frame = frame[y1:y2, x1:x2] | |
full_frames.append(frame) | |
print ("Number of frames available for inference: "+str(len(full_frames))) | |
if not args.audio.endswith('.wav'): | |
print('Extracting raw audio...') | |
# command = 'ffmpeg -y -i {} -strict -2 {}'.format(args.audio, 'temp/temp.wav') | |
# subprocess.call(command, shell=True) | |
subprocess.check_call([ | |
"ffmpeg", "-y", | |
"-i", args.audio, | |
"temp/temp.wav", | |
]) | |
args.audio = 'temp/temp.wav' | |
wav = audio.load_wav(args.audio, 16000) | |
mel = audio.melspectrogram(wav) | |
print(mel.shape) | |
if np.isnan(mel.reshape(-1)).sum() > 0: | |
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') | |
mel_chunks = [] | |
mel_idx_multiplier = 80./fps | |
i = 0 | |
while 1: | |
start_idx = int(i * mel_idx_multiplier) | |
if start_idx + mel_step_size > len(mel[0]): | |
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) | |
break | |
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) | |
i += 1 | |
print("Length of mel chunks: {}".format(len(mel_chunks))) | |
full_frames = full_frames[:len(mel_chunks)] | |
batch_size = args.wav2lip_batch_size | |
gen = datagen(full_frames.copy(), mel_chunks) | |
s = time() | |
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, | |
total=int(np.ceil(float(len(mel_chunks))/batch_size)))): | |
if i == 0: | |
frame_h, frame_w = full_frames[0].shape[:-1] | |
out = cv2.VideoWriter("./result.avi", | |
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h)) | |
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) | |
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) | |
with torch.no_grad(): | |
pred = model(mel_batch, img_batch) | |
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. | |
for p, f, c in zip(pred, frames, coords): | |
y1, y2, x1, x2 = c | |
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) | |
f[y1:y2, x1:x2] = p | |
out.write(f) | |
out.release() | |
print("wav2lip prediction time:", time() - s) | |
subprocess.check_call([ | |
"ffmpeg", "-y", | |
# "-vsync", "0", "-hwaccel", "cuda", "-hwaccel_output_format", "cuda", | |
"-i", "./result.avi", | |
"-i", args.audio, | |
# "-c:v", "h264_nvenc", | |
args.outfile, | |
]) | |
model = detector = detector_model = None | |
def do_load(checkpoint_path): | |
global model, detector, detector_model | |
model = load_model(checkpoint_path) | |
# SFDDetector.load_model(device) | |
detector = RetinaFace(gpu_id=0, model_path="./Wav2Lip/checkpoints/mobilenet.pth", network="mobilenet") | |
# detector = RetinaFace(gpu_id=0, model_path="checkpoints/resnet50.pth", network="resnet50") | |
detector_model = detector.model | |
print("Models loaded") | |
face_batch_size = 64 * 8 | |
def face_rect(images): | |
num_batches = math.ceil(len(images) / face_batch_size) | |
prev_ret = None | |
for i in range(num_batches): | |
batch = images[i * face_batch_size: (i + 1) * face_batch_size] | |
all_faces = detector(batch) # return faces list of all images | |
for faces in all_faces: | |
if faces: | |
box, landmarks, score = faces[0] | |
prev_ret = tuple(map(int, box)) | |
yield prev_ret | |
if __name__ == '__main__': | |
args = parser.parse_args() | |
do_load(args.checkpoint_path) | |
main() | |