Update app.py
Browse files
app.py
CHANGED
@@ -1,140 +1,174 @@
|
|
1 |
-
import requests
|
2 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
def
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
return response.
|
24 |
-
|
25 |
-
|
26 |
-
return
|
27 |
|
28 |
-
def
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
for
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
if clause['action'] == 'Negotiate':
|
37 |
-
prompt += f"Negotiation points: {clause['negotiation_points']}\n"
|
38 |
-
prompt += "\n"
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
return
|
44 |
-
|
45 |
-
st.title("Contract Negotiation Assistant")
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
st.session_state.analysis_results = {
|
69 |
-
"crew_analysis": {
|
70 |
-
"final_recommendation": {
|
71 |
-
"tasks_output": [
|
72 |
-
{
|
73 |
-
"agent": "Clause 1",
|
74 |
-
"pydantic": {
|
75 |
-
"analysis": "This clause limits liability.",
|
76 |
-
"recommendation": "Consider revising for fairness."
|
77 |
-
}
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"agent": "Clause 2",
|
81 |
-
"pydantic": {
|
82 |
-
"analysis": "This clause outlines payment terms.",
|
83 |
-
"recommendation": "This is acceptable."
|
84 |
-
}
|
85 |
-
}
|
86 |
-
]
|
87 |
-
}
|
88 |
-
}
|
89 |
-
}
|
90 |
|
91 |
-
|
92 |
-
if st.session_state.analysis_results is not None:
|
93 |
-
data = st.session_state.analysis_results
|
94 |
-
crew_analysis = data.get("crew_analysis", {})
|
95 |
|
96 |
-
|
97 |
-
tasks_output = crew_analysis.get("final_recommendation", {}).get("tasks_output", [])
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
if task.get("pydantic"):
|
103 |
-
clause_analysis = task["pydantic"].get("analysis", "")
|
104 |
-
recommendation = task["pydantic"].get("recommendation", "")
|
105 |
-
|
106 |
-
st.subheader(f"Clause: {agent}")
|
107 |
-
st.write("Analysis:")
|
108 |
-
st.write(clause_analysis)
|
109 |
-
st.write("Recommendation:")
|
110 |
-
st.write(recommendation)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
st.
|
|
|
130 |
|
131 |
# Finalize Contract button
|
132 |
if st.button("Finalize Contract"):
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
|
|
|
|
139 |
else:
|
140 |
st.write("Please upload a contract to begin the analysis.")
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import json
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
import docx # python-docx
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import openai
|
8 |
|
9 |
+
api_key = '3fbfe25109b647efb7bf2f45bd667163'
|
10 |
+
openai.api_key = api_key
|
11 |
+
openai.api_base = "https://api.aimlapi.com"
|
12 |
|
13 |
+
def call_ai_api(prompt, max_tokens=1000):
|
14 |
+
"""
|
15 |
+
Function to call the 3rd party Llama API.
|
16 |
+
"""
|
17 |
+
try:
|
18 |
+
response = openai.ChatCompletion.create(
|
19 |
+
model="meta-llama/Llama-3.2-3B-Instruct-Turbo", # Using Llama-3.2 model
|
20 |
+
messages=[
|
21 |
+
{
|
22 |
+
"role": "user",
|
23 |
+
"content": prompt # Directly use the prompt string
|
24 |
+
}
|
25 |
+
],
|
26 |
+
max_tokens=max_tokens,
|
27 |
+
)
|
28 |
+
return response.choices[0].message["content"]
|
29 |
+
except Exception as e:
|
30 |
+
print(f"An error occurred while calling the API: {str(e)}")
|
31 |
+
return None
|
32 |
|
33 |
+
def extract_json(text):
|
34 |
+
"""
|
35 |
+
Try to extract JSON data from a text string using a regular expression.
|
36 |
+
"""
|
37 |
+
json_match = re.search(r'{.*}', text, re.DOTALL)
|
38 |
+
if json_match:
|
39 |
+
return json_match.group(0)
|
40 |
+
return None
|
41 |
+
|
42 |
+
def chunk_text(text, max_chunk_size=3000):
|
43 |
+
"""
|
44 |
+
Split the text into chunks based on a maximum size.
|
45 |
+
"""
|
46 |
+
chunks = []
|
47 |
+
words = text.split()
|
48 |
+
current_chunk = []
|
49 |
|
50 |
+
for word in words:
|
51 |
+
current_chunk.append(word)
|
52 |
+
if len(' '.join(current_chunk)) > max_chunk_size:
|
53 |
+
chunks.append(' '.join(current_chunk[:-1]))
|
54 |
+
current_chunk = [word]
|
|
|
|
|
|
|
55 |
|
56 |
+
if current_chunk:
|
57 |
+
chunks.append(' '.join(current_chunk))
|
58 |
+
|
59 |
+
return chunks
|
|
|
|
|
60 |
|
61 |
+
def extract_text_from_pdf(file_content):
|
62 |
+
"""
|
63 |
+
Extract text from a PDF file using PyMuPDF.
|
64 |
+
"""
|
65 |
+
pdf_document = fitz.open(stream=file_content, filetype="pdf")
|
66 |
+
text = ""
|
67 |
+
for page in pdf_document:
|
68 |
+
text += page.get_text()
|
69 |
+
return text
|
70 |
|
71 |
+
def extract_text_from_docx(file_content):
|
72 |
+
"""
|
73 |
+
Extract text from a DOCX file using python-docx.
|
74 |
+
"""
|
75 |
+
doc = docx.Document(file_content)
|
76 |
+
text = []
|
77 |
+
for para in doc.paragraphs:
|
78 |
+
text.append(para.text)
|
79 |
+
return "\n".join(text)
|
80 |
|
81 |
+
def analyze_contract(file_content, file_type):
|
82 |
+
# Extract the text based on the file type
|
83 |
+
if file_type == "pdf":
|
84 |
+
decoded_content = extract_text_from_pdf(file_content)
|
85 |
+
elif file_type == "docx":
|
86 |
+
decoded_content = extract_text_from_docx(file_content)
|
87 |
+
else:
|
88 |
+
decoded_content = file_content.decode('utf-8') # Assuming it's a text file
|
89 |
|
90 |
+
# Chunk the contract content
|
91 |
+
chunks = chunk_text(decoded_content, max_chunk_size=3000) # Adjust the size as needed
|
92 |
+
analysis_results = {"clauses": []}
|
93 |
+
|
94 |
+
for chunk in chunks:
|
95 |
+
prompt = f"""Analyze the following contract section and provide a detailed breakdown of its clauses, including their titles, content, risk level, and a brief explanation for each. The document content is as follows:
|
96 |
+
{chunk}
|
97 |
+
Format your response as a JSON object with a 'clauses' key containing an array of clause objects. Each clause object should have 'title', 'content', 'risk_level', and 'explanation' keys. Do not include any extra text, only the JSON output.
|
98 |
+
"""
|
99 |
+
# Call AI API to analyze each chunk
|
100 |
+
response = call_ai_api(prompt, max_tokens=2000)
|
101 |
+
|
102 |
+
# Parse the JSON response
|
103 |
+
if response:
|
104 |
+
|
105 |
+
# Try to extract JSON from the response
|
106 |
+
json_data = extract_json(response)
|
107 |
+
if json_data:
|
108 |
+
try:
|
109 |
+
analysis_result = json.loads(json_data)
|
110 |
+
if "clauses" in analysis_result:
|
111 |
+
analysis_results["clauses"].extend(analysis_result["clauses"])
|
112 |
+
else:
|
113 |
+
st.warning("The API response did not include any clauses.")
|
114 |
+
except json.JSONDecodeError:
|
115 |
+
pass
|
116 |
+
else:
|
117 |
+
st.error("The response did not contain any recognizable JSON.")
|
118 |
|
119 |
+
return analysis_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
st.title("Contract Negotiation Assistant")
|
|
|
|
|
|
|
122 |
|
123 |
+
uploaded_file = st.file_uploader("Upload your contract document", type=["txt", "pdf", "docx"])
|
|
|
124 |
|
125 |
+
if uploaded_file is not None:
|
126 |
+
file_content = uploaded_file.read()
|
127 |
+
file_type = uploaded_file.type.split('/')[1] # Get file type (e.g., pdf, docx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
st.write("Analyzing contract...")
|
130 |
+
analysis_result = analyze_contract(file_content, file_type)
|
131 |
+
|
132 |
+
if analysis_result and analysis_result.get("clauses"):
|
133 |
+
clauses = analysis_result.get("clauses", [])
|
134 |
+
clause_decisions = {}
|
135 |
+
|
136 |
+
for i, clause in enumerate(clauses):
|
137 |
+
st.subheader(f"Clause {i + 1}: {clause['title']}")
|
138 |
+
st.write(clause['content'])
|
139 |
+
st.write(f"Risk Level: {clause['risk_level']}")
|
140 |
+
st.write(f"Explanation: {clause['explanation']}")
|
141 |
+
|
142 |
+
decision = st.radio(f"Decision for Clause {i + 1}", ["Accept", "Negotiate", "Reject"], key=f"decision_{i}")
|
143 |
+
clause_decisions[i] = decision
|
144 |
+
|
145 |
+
if decision == "Negotiate":
|
146 |
+
negotiation_points = st.text_area(f"Enter negotiation points for Clause {i + 1}", key=f"negotiation_{i}")
|
147 |
+
clause_decisions[f"{i}_points"] = negotiation_points # Save negotiation points
|
148 |
|
149 |
# Finalize Contract button
|
150 |
if st.button("Finalize Contract"):
|
151 |
+
prompt = """As a professional contract negotiator, draft a courteous email response to the contract drafter based on the following decisions:\n\n"""
|
152 |
+
|
153 |
+
for i, clause in enumerate(clauses):
|
154 |
+
decision = clause_decisions[i]
|
155 |
+
prompt += f"Clause {i + 1} ({clause['title']}): {decision}\n"
|
156 |
+
if decision == "Negotiate":
|
157 |
+
prompt += f"Negotiation points: {clause_decisions.get(f'{i}_points', 'No specific points provided.')}\n"
|
158 |
+
prompt += "\n"
|
159 |
+
|
160 |
+
prompt += "Please draft a professional and polite email response addressing these points and suggesting next steps for the negotiation process."
|
161 |
+
|
162 |
+
response = call_ai_api(prompt)
|
163 |
+
|
164 |
+
st.subheader("Generated Response:")
|
165 |
+
st.write(response)
|
166 |
+
|
167 |
+
if st.button("Save Response"):
|
168 |
+
# Implement saving functionality here
|
169 |
+
st.write("Response saved successfully!")
|
170 |
|
171 |
+
else:
|
172 |
+
st.write("No clauses found in the contract analysis. Please try again.")
|
173 |
else:
|
174 |
st.write("Please upload a contract to begin the analysis.")
|