Ashar086 commited on
Commit
cd7e94f
1 Parent(s): 70ed61d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +150 -130
app.py CHANGED
@@ -1,137 +1,157 @@
1
  import streamlit as st
2
- import time
3
- import plotly.graph_objects as go
4
-
5
- # Set page layout to wide mode
6
- st.set_page_config(layout="wide")
7
-
8
- # Treatment outcomes and possibilities
9
- outcomes = [
10
- ("Doctor prescribes Treatment 1 (Personalized Drug A)", "info"),
11
- ("Nurse monitors Patient - Slight improvement", "success"),
12
- ("Clinician evaluates lab results - Treatment seems effective", "info"),
13
- ("Doctor prescribes Treatment 2 (Personalized Drug B)", "warning"),
14
- ("Nurse monitors Patient - Side effects observed", "error"),
15
- ("Clinician suggests modifying dosage", "warning"),
16
- ("Doctor prescribes modified Treatment 2", "info"),
17
- ("Patient shows significant improvement", "success")
18
- ]
19
-
20
- # Different possible outcomes of each treatment
21
- possibilities = {
22
- 1: [
23
- ("Possibility 1: Patient responds well to Treatment 1", "success"),
24
- ("Possibility 2: Slight improvement, but inconclusive results", "info"),
25
- ("Possibility 3: No response, reevaluation needed", "error")
26
- ],
27
- 2: [
28
- ("Possibility 1: Significant improvement", "success"),
29
- ("Possibility 2: Mild side effects", "warning")
30
- ],
31
- 3: [
32
- ("Possibility 1: Treatment is effective", "success"),
33
- ("Possibility 2: Inconclusive lab results", "info")
34
- ],
35
- 4: [
36
- ("Possibility 1: Improvement with Drug B", "success"),
37
- ("Possibility 2: Significant side effects", "error")
38
- ],
39
- 5: [
40
- ("Possibility 1: Side effects worsen, modify dosage", "warning"),
41
- ("Possibility 2: Manageable side effects", "info")
42
- ],
43
- 6: [
44
- ("Possibility 1: Dosage adjustment successful", "success"),
45
- ("Possibility 2: Further modification needed", "warning")
46
- ],
47
- 7: [
48
- ("Possibility 1: Patient responds well to modified treatment", "success"),
49
- ("Possibility 2: Limited response, consider alternatives", "warning")
50
- ],
51
- 8: [
52
- ("Possibility 1: Complete recovery", "success"),
53
- ("Possibility 2: Partial improvement, continue monitoring", "info")
54
- ]
55
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
- # Create a tree diagram using Plotly with animations
58
- def create_tree_diagram(stage):
59
- labels = [f"Stage {stage}: {outcomes[stage - 1][0]}"]
60
- parents = [""] # Root node
61
- values = [1] # Root node value
62
- colors = ['lightgrey'] # Root node color
 
63
 
64
- stage_possibilities = possibilities.get(stage, [("No specific possibilities defined", "info")])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- for possibility, outcome_type in stage_possibilities:
67
- labels.append(possibility)
68
- parents.append(f"Stage {stage}: {outcomes[stage - 1][0]}")
69
- values.append(1) # Equal weight for all possibilities
70
- if outcome_type == "success":
71
- colors.append('#d4edda')
72
- elif outcome_type == "info":
73
- colors.append('#cce5ff')
74
- elif outcome_type == "warning":
75
- colors.append('#fff3cd')
76
- elif outcome_type == "error":
77
- colors.append('#f8d7da')
78
- else:
79
- colors.append('lightgrey')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
- fig = go.Figure(go.Treemap(
82
- labels=labels,
83
- parents=parents,
84
- values=values,
85
- marker=dict(colors=colors),
86
- textinfo="label",
87
- textfont=dict(size=14),
88
- hoverinfo="label+value+percent entry"
89
- ))
90
-
91
- fig.update_layout(
92
- margin=dict(t=10, l=10, r=10, b=10),
93
- width=600, height=400,
94
- uniformtext=dict(minsize=12, mode='show'),
95
- transition_duration=500 # Animation speed
96
- )
97
 
98
- return fig
99
-
100
- # Streamlit app layout
101
- st.title("Precision Medicine AI Agents - Treatment Decision Tree with Animations")
102
-
103
- # Add a start animation button
104
- start_button = st.button("Start Animation")
105
-
106
- if start_button:
107
- for i, (outcome, outcome_type) in enumerate(outcomes, 1):
108
- with st.container():
109
- col1, col2 = st.columns([1, 2])
110
-
111
- with col1:
112
- if outcome_type == "success":
113
- st.markdown(f"<div style='padding:10px; border-radius:5px; background-color:#d4edda; color:#155724;'><strong>Stage {i}:</strong> {outcome}</div>", unsafe_allow_html=True)
114
- elif outcome_type == "info":
115
- st.markdown(f"<div style='padding:10px; border-radius:5px; background-color:#cce5ff; color:#004085;'><strong>Stage {i}:</strong> {outcome}</div>", unsafe_allow_html=True)
116
- elif outcome_type == "warning":
117
- st.markdown(f"<div style='padding:10px; border-radius:5px; background-color:#fff3cd; color:#856404;'><strong>Stage {i}:</strong> {outcome}</div>", unsafe_allow_html=True)
118
- elif outcome_type == "error":
119
- st.markdown(f"<div style='padding:10px; border-radius:5px; background-color:#f8d7da; color:#721c24;'><strong>Stage {i}:</strong> {outcome}</div>", unsafe_allow_html=True)
120
-
121
- st.markdown("### Possibilities:")
122
- stage_possibilities = possibilities.get(i, [("No specific possibilities defined", "info")])
123
- for possibility, possibility_type in stage_possibilities:
124
- if possibility_type == "success":
125
- st.markdown(f"<div style='padding:5px; background-color:#d4edda; color:#155724;'><strong>{possibility}</strong></div>", unsafe_allow_html=True)
126
- elif possibility_type == "info":
127
- st.markdown(f"<div style='padding:5px; background-color:#cce5ff; color:#004085;'><strong>{possibility}</strong></div>", unsafe_allow_html=True)
128
- elif possibility_type == "warning":
129
- st.markdown(f"<div style='padding:5px; background-color:#fff3cd; color:#856404;'><strong>{possibility}</strong></div>", unsafe_allow_html=True)
130
- elif possibility_type == "error":
131
- st.markdown(f"<div style='padding:5px; background-color:#f8d7da; color:#721c24;'><strong>{possibility}</strong></div>", unsafe_allow_html=True)
132
-
133
- with col2:
134
- fig = create_tree_diagram(i)
135
- st.plotly_chart(fig, use_container_width=True)
136
-
137
- time.sleep(3) # Shorter delay for smoother transitions
 
1
  import streamlit as st
2
+ import numpy as np
3
+ import random
4
+
5
+ # Initialize constants
6
+ DOCTOR_ACTIONS = ["Prescribe Medication", "Recommend Tests", "Consult Clinician", "Schedule Surgery"]
7
+ NURSE_ACTIONS = ["Monitor Vitals", "Administer Medication", "Report to Doctor", "Assist Surgery"]
8
+ PATIENT_CONDITIONS = ["Healthy", "Mild Illness", "Chronic Illness", "Emergency"]
9
+ DOCTOR_EMOTIONS = ["Calm", "Stressed", "Overwhelmed"]
10
+ NURSE_EMOTIONS = ["Focused", "Fatigued", "Panicked"]
11
+
12
+ # Rewards and Penalties
13
+ REWARDS = {
14
+ "Prescribe Medication": 12,
15
+ "Recommend Tests": 7,
16
+ "Consult Clinician": 9,
17
+ "Schedule Surgery": 17,
18
+ "Monitor Vitals": 4,
19
+ "Administer Medication": 12,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  }
21
+ PENALTIES = {
22
+ "Wrong Medication": -5,
23
+ "Missed Diagnosis": -10,
24
+ "Stress-Induced Mistake": -7,
25
+ }
26
+
27
+ # Initialize session state for metrics and satisfaction
28
+ if "performance_metrics" not in st.session_state:
29
+ st.session_state.performance_metrics = {
30
+ "Doctor": {"successful_treatments": 0, "failed_treatments": 0},
31
+ "Nurse": {"successful_assists": 0, "failed_assists": 0}
32
+ }
33
+ if "patient_satisfaction" not in st.session_state:
34
+ st.session_state.patient_satisfaction = 100
35
 
36
+
37
+ # Define the Agent class for Q-learning
38
+ class Agent:
39
+ def __init__(self, agent_type):
40
+ self.agent_type = agent_type
41
+ self.actions = DOCTOR_ACTIONS if agent_type == "Doctor" else NURSE_ACTIONS
42
+ self.q_table = np.zeros((len(PATIENT_CONDITIONS), len(self.actions)))
43
 
44
+ def choose_action(self, state, exploration_rate=0.05):
45
+ if random.uniform(0, 1) < exploration_rate: # Explore
46
+ return random.randint(0, len(self.actions)-1)
47
+ else: # Exploit (choose best action)
48
+ return np.argmax(self.q_table[state])
49
+
50
+ def update_q_value(self, state, action, reward, learning_rate=0.1, discount_factor=0.9):
51
+ old_q_value = self.q_table[state, action]
52
+ best_future_q_value = np.max(self.q_table)
53
+ new_q_value = old_q_value + learning_rate * (reward + discount_factor * best_future_q_value - old_q_value)
54
+ self.q_table[state, action] = new_q_value
55
+
56
+
57
+ # Instantiate agents
58
+ doctor_agent = Agent("Doctor")
59
+ nurse_agent = Agent("Nurse")
60
+
61
+
62
+ # Function to simulate a special event
63
+ def simulate_special_event():
64
+ event = random.choice([None, "Disease Outbreak", "Resource Shortage"])
65
+ if event == "Disease Outbreak":
66
+ st.subheader("Special Event: Disease Outbreak")
67
+ st.write("A sudden disease outbreak has flooded the hospital with new patients. Resources are limited!")
68
+ elif event == "Resource Shortage":
69
+ st.subheader("Special Event: Resource Shortage")
70
+ st.write("A medical supply shortage is impacting the hospital. Staff must prioritize high-risk patients.")
71
+ return event
72
+
73
+
74
+ # Function to handle complications during treatment
75
+ def handle_complications():
76
+ complication = random.choices(
77
+ [None, "Allergic Reaction", "Unexpected Complication"],
78
+ weights=[0.6, 0.2, 0.2]
79
+ )[0]
80
 
81
+ penalty = 0
82
+ if complication:
83
+ st.subheader(f"Complication: {complication}")
84
+ if complication == "Allergic Reaction":
85
+ st.write("The patient has developed an allergic reaction to the prescribed medication!")
86
+ penalty = PENALTIES["Wrong Medication"]
87
+ st.session_state.patient_satisfaction -= 10
88
+ elif complication == "Unexpected Complication":
89
+ st.write("An unexpected complication occurred during surgery!")
90
+ penalty = PENALTIES["Stress-Induced Mistake"]
91
+ st.session_state.patient_satisfaction -= 15
92
+ return penalty
93
+
94
+
95
+ # Main simulation button logic
96
+ if st.button("Run Simulation"):
97
+ # Simulate a special event
98
+ special_event = simulate_special_event()
99
+
100
+ # Patient condition simulation
101
+ patient_state = random.choice(PATIENT_CONDITIONS)
102
+ st.write(f"Simulated Patient Condition: {patient_state}")
103
+ patient_index = PATIENT_CONDITIONS.index(patient_state)
104
+
105
+ # Doctor and nurse emotions
106
+ doctor_emotion = random.choice(DOCTOR_EMOTIONS)
107
+ nurse_emotion = random.choice(NURSE_EMOTIONS)
108
+ st.write(f"Doctor's Emotional State: {doctor_emotion}")
109
+ st.write(f"Nurse's Emotional State: {nurse_emotion}")
110
+
111
+ # Doctor Action
112
+ doctor_action_index = doctor_agent.choose_action(patient_index)
113
+ doctor_action = DOCTOR_ACTIONS[doctor_action_index]
114
+ st.write(f"Doctor's Chosen Action: {doctor_action}")
115
+
116
+ # Nurse Action
117
+ nurse_action_index = nurse_agent.choose_action(patient_index)
118
+ nurse_action = NURSE_ACTIONS[nurse_action_index]
119
+ st.write(f"Nurse's Chosen Action: {nurse_action}")
120
+
121
+ # Handle potential complications
122
+ penalty = handle_complications()
123
 
124
+ # Reward or penalty
125
+ reward = REWARDS.get(doctor_action, 0) if penalty == 0 else penalty
126
+ if doctor_emotion in ["Stressed", "Overwhelmed"]:
127
+ penalty += PENALTIES["Stress-Induced Mistake"]
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
+ # Update Q-values
130
+ doctor_agent.update_q_value(patient_index, doctor_action_index, reward)
131
+
132
+ st.write(f"Doctor's Reward/Penalty: {reward}")
133
+ st.write(f"Patient Satisfaction: {st.session_state.patient_satisfaction}")
134
+
135
+ # Outcome and Performance Metrics Update
136
+ outcome = random.choices(
137
+ ["Recovery", "Further Treatment Needed", "Complication"],
138
+ weights=[0.6, 0.3, 0.1]
139
+ )[0]
140
+
141
+ st.write(f"Patient Status after Treatment: {outcome}")
142
+
143
+ if outcome == "Recovery":
144
+ st.session_state.performance_metrics["Doctor"]["successful_treatments"] += 1
145
+ st.session_state.performance_metrics["Nurse"]["successful_assists"] += 1
146
+ else:
147
+ st.session_state.performance_metrics["Doctor"]["failed_treatments"] += 1
148
+ st.session_state.performance_metrics["Nurse"]["failed_assists"] += 1
149
+
150
+ st.write("Simulation completed! Run again for different outcomes.")
151
+
152
+ # Display performance metrics
153
+ st.subheader("Performance Metrics:")
154
+ st.write(f"Doctor's Successful Treatments: {st.session_state.performance_metrics['Doctor']['successful_treatments']}")
155
+ st.write(f"Doctor's Failed Treatments: {st.session_state.performance_metrics['Doctor']['failed_treatments']}")
156
+ st.write(f"Nurse's Successful Assists: {st.session_state.performance_metrics['Nurse']['successful_assists']}")
157
+ st.write(f"Nurse's Failed Assists: {st.session_state.performance_metrics['Nurse']['failed_assists']}")