File size: 1,597 Bytes
b22d66b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

class VisualizationSelector:
    def select_visualizations(self, data):
        visualizations = []
        
        # Histogram for numerical columns
        numeric_columns = data.select_dtypes(include=[np.number]).columns
        for column in numeric_columns:
            fig, ax = plt.subplots()
            sns.histplot(data[column], kde=True, ax=ax)
            ax.set_title(f'Distribution of {column}')
            visualizations.append(fig)

        # Correlation heatmap
        if len(numeric_columns) > 1:
            fig, ax = plt.subplots(figsize=(10, 8))
            sns.heatmap(data[numeric_columns].corr(), annot=True, cmap='coolwarm', ax=ax)
            ax.set_title('Correlation Heatmap')
            visualizations.append(fig)

        # Scatter plot matrix
        if len(numeric_columns) > 1:
            fig = sns.pairplot(data[numeric_columns])
            fig.fig.suptitle('Scatter Plot Matrix', y=1.02)
            visualizations.append(fig)

        # Box plots for categorical vs numerical
        categorical_columns = data.select_dtypes(include=['object']).columns
        for cat_col in categorical_columns:
            for num_col in numeric_columns:
                fig, ax = plt.subplots()
                sns.boxplot(x=cat_col, y=num_col, data=data, ax=ax)
                ax.set_title(f'{cat_col} vs {num_col}')
                ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right')
                visualizations.append(fig)

        return visualizations